
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of th is reproduction is dependent upon the quality of the copy
subm itted. Broken or indistinct print colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9° black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

UMI
800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A SYSTEM DYNAMICS MODEL FOR CONCURRENT

SOFTWARE ENGINEERING

The m em bers of the Committee approve the doctoral
dissertation of Chih-tung H su

Pei Hsia
Supervising Professor

David C. Kung

Bob P. Weems

Lawrence B. Holder

Piotr J. Gmytrasiewicz
I

Dean of the G raduate School ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C opyright © by Chih-tung H su 1999

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A SYSTEM DYNAMICS MODEL FOR CONCURRENT

SOFTWARE ENGINEERING

by

CHIH-TUNG HSU

Presented to the Faculty of the G raduate School of

The University of Texas at Arlington in Partial Fulfillm ent

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number 9948006

Copyright 1999 by
Hsu, Chih-tung

All rights reserved.

___ ®

UMI
UMI Microform9948006

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

First of all, I w ould like to express m y deep appreciation to m y thesis superv i­

sor, Dr. Pei Hsia, for his enduring guidance, encouragem ent, and su p p o rt th rough­

ou t the years. My special thanks to Dr. David K ung for his guidance and su p p o rt in

the past few years.

I w ould like to acknowledge Dr. Bob Weems, Dr. Lawrence Holder, and Dr.

Piotr Gm ytrasiewicz for serving on m y Ph.D. committee and providing guidance. I

took three courses from Dr. Weems, two courses from Dr. Holder, and have assisted

Dr. G m ytrasiew icz in the past. Their teaching attitudes and abilities have m otivated

m e to becom e a good teacher.

Special thanks to Professor Mikio Aoyama and his colleagues a t Fujitsu,

Kawasaki, Japan, for sharing w ith me their experience in concurrent softw are devel­

opm ent projects. A nd special thanks to m y best friend Pei-ching for review ing and

editing the thesis.

Finally, I w ould like to express m y deep gratitude to m y parents for their

understand ing and everlasting love and support and to m y sisters, Coco an d Abby,

and their families, for their love and enduring support. I could not have done it

w ithout them .

May 12,1999

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

A SYSTEM DYNAMICS MODEL FOR CONCURRENT
SOFTWARE ENGINEERING

Publication N o .______________

C hih-tung Hsu, Ph.D.

The U niversity of Texas a t Arlington, 1999

Supervising Professor: Pei Hsia

C oncurrent engineering (CE) has been w idely adopted and has m ade

significant contributions to the electronics and m anufacturing industries in term s

of project cost and cycle time reduction, as well as p roduct quality im provem ent.

The softw are developm ent industry has begun to learn from the CE experiences as

practiced in other industries. Several software com panies have significantly

reduced their product cycle tim e by applying a m odest degree of concurrent

engineering; for example, Fujitsu's C oncurrent Developm ent m odel, Microsoft's

Daily Build process, HP's Platform Developm ent model, concurrent

internationalization of software products for local m arkets, and DuPont's Timebox

approach.

C oncurrent software engineering (CSE) shortens tim e-to-m arket b u t creates

new problem s in terms of coordinating multiple, concurrent activities. The extent

of benefits that CSE-based practices can deliver, their critical success factors, and

the potential high risk areas need to be assessed carefully.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This research aim s to develop a system dynam ics sim ulation model (CSE-SD)

to systematically assess the benefits and drawbacks of CSE. We m ade three m ajor

contributions in this research: (1) we have classified different types of CSE

practices; (2) we have identified the specific benefits, potential risks, and the

dynam ic cause-effect implications of different types of CSE practices; and (3) w e

have stud ied three sets of questions using this system dynam ics model. The results

of our study provide strategic inform ation for softw are project m anagers w ho

attem pt concurrent software development.

The CSE-SD model is an economic and effective m anagem ent policy

exploration tool for pre-assessing the benefits and potential risks of future projects.

By calibrating the sim ulation m odel against the data collected from previous

projects, it can be used to predict the possible outcom es of different m anagem ent

policies, actions, or decisions.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

ACKNOW LEDGM ENTS ... iv

ABSTRACT ... v

LIST OF FIGURES ... xii

LIST OF TABLES ... xvii

C h ap te r

1. INTRODUCTION .. 1

1.1 M otivation .. 1

1.2 Objectives and Expected Significance .. 1

1.3 Research Approach .. 2

1.4 O rganization of the Thesis ... 4

2. BACKGROUND .. 6

2.1 Introduction .. 6

2.2 C oncurrent Engineering ... 6

2.2.1 Definition of Concurrent Engineering 6

2.2.1.1 Concurrency... 8

2.2.1.2 In teg ra tio n ... 10

2.2.1.3 Information Sharing... 11

2.2.1.4 Quality F o c u s ... 12

2.2.2 CE-based Process Im provem ent 12

2.2.2.1 Cycle Time R ed u ctio n ... 13

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.2.2 Quality Im p ro v em en t... 14

2.2.23 Cost R eduction ... 15

2.3 C oncurrent Software Engineering ... 16

2.3.1 C oncurrency .. 16

2.3.2 In te g ra tio n .. 17

2.3.3 Inform ation S h a rin g .. 18

2.3.4 Q uality F ocus.. 18

2.3.5 C oncurrent Software Engineering Fram ew ork................... 19

2.4 System Dynam ics .. 21

3. CONCURRENT SOFTWARE ENGINEERING
FRAMEWORK ... 24

3.1 Introduction ... 24

3.2 A RAW M odel .. 24

3.3 A Classification of CSE M odels ... 27

3.3.1 Type 1 C o n cu rren cy .. 28

3.3.2 Type 2 C o n cu rren cy .. 28

3.3.3 Type 3 C o n cu rren cy .. 30

3.3.4 Type 0 C o n cu rren cy .. 31

3.4 State-of-the-Practice CSE Practices ... 32

3.4.1 C oncurrent Developm ent M odel .. 33

3.4.2 C oncurrent Internationalization .. 34

3.4.3 Platform D evelopm ent M odel .. 36

3.4.4 Parallel Timebox Developm ent .. 38

3.4.5 Hardware-Software Codesign .. 39

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.4.6 The IFTES A pproach ... 41

3.4.7 Microsoft Daily Build Process .. 43

4. A SYSTEM DYNAMICS MODEL ... 45

4.1 Introduction .. 45

4.2 Dynamics of Concurrent Software Engineering 46

4.2.1 Phase O verlapping ... 46

4.2.2 Synchronous C oncurrent Subsystems 51

4.2.3 Asynchronous Concurrent Subsystems 55

4.2.4 Cross Function Integration .. 57

4.3 Model Structure .. 62

4.4 Com parison w ith O ther Related SD Models 68

4.4.1 Abdel-Ham id and M adnick .. 68

4.4.2 JPL .. 69

4.4.3 M adachy .. 70

4.4.4 Collofello and T vedt ... 71

5. MODEL TESTING .. 75

5.1 Introduction .. 75

5.2 Unit Testing .. 76

5.3 System Testing .. 95

6. BROOKS'LAW REVISITED ... 101

6.1 Introduction .. 101

6.2 Related Studies on Brooks' Law .. 101

6.3 Dynamics of Brooks' L a w ... 103

6.4 Simulation Results ... 107

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.5 Sum m ary .. 113

7. O N THE IMPACT OF CONCURRENT
SOFTWARE ENGINEERING ... 115

7.1 Introduction ... 115

7.2 Model Calibration ... 116

7.2.1 The BASELNE Software Project 116

7.2.2 M apping COCOMO Developm ent
Activities to CSE-SD .. 117

7.2.3 Calibrate CSE-SD A gainst COCOMO 122

7.3 Im pact of Phase O verlapping .. 126

7.3.1 Modeling Phase O verlapping .. 127

7.3.2 Modeling Requirements Changes 128

7.3.3 Simulation Results .. 131

7.4 Im pact of Synchronous C oncurrent Subsystems 137

7.4.1 Determining Com m unication Overhead 138

7.4.2 Interteam Interactions .. 140

7.4.3 Experimentation Setting .. 143

7.4.4 Simulation Results .. 147

8. CONCLUSIONS AND FUTURE WORK .. 154

8.1 Contributions of the Research .. 154

8.2 Im portant Findings ... 155

8.2.1 Brooks' Law ... 156

8.2.2 Impact of Phase O verlapping ... 157

8.2.3 Impact of Synchronous Concurrent
subsystems .. 157

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8.3 Future W ork ... 158

A p p en d ix

A. CSE-SD MODEL SPECIFICATION ... 160

B. CSE-SD MODEL EQUATIONS ... 201

C. KEY STATISTICS OF THE EXAMPLE PROJECT 231

REFERENCES .. 233

BIOGRAPHICAL INFORMATION ... 243

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure Page

2.1. Traditional sequential engineering ... 9

2.2. C oncurrent engineering .. 10

2.3. A fishbone diagram for the reasons of CE-based
process im provem ent .. 15

2.4. The Blackburn CSE fram ework ... 20

3.1. A conceptual resource-activity-work p roduct m odel 25

3.2. Type 1 concurrency ... 28

3.3. Type 2 concurrency ... 29

3.4. Type 3 concurrency ... 30

3.5. Type 0 concurrency ... 31

3.6. The Fujitsu concurrent developm ent m odel 33

3.7. Concurrent internationalization of global
software products .. 35

3.8. The platform developm ent m odel ... 37

3.9. The parallel timebox developm ent practice .. 39

3.10. H ardw are-softw are codesign ... 41

3.11. The IPTES approach .. 42

3.12. The Microsoft daily build process ... 44

4.1. Dynamics of phase overlapping .. 47

4.2. Dynamics of synchronous concurrent subsystem s 51

4.3. Dynamics of asynchronous concurrent subsystem s 56

4.4. Dynamics of cross function integration ... 58

4.5. O verview of the CSE-SD m odel .. 67

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.1. Project progress of a perfect project .. 77

5.2. Adjusting the planned project effort w hen there is a
reported gap between the perceived project effort
needed to complete the project and the rem aining
project effort .. 79

5.3. Nom inal and actual developm ent defect rate 80

5.4. The im pact of defect density on developm ent
defects generation .. 81

5.5. The im pact of workforce mix on developm ent
defects generation .. 83

5.6. The im pact of schedule pressure on
developm ent defects generation ... 85

5.7. Project scope change ... 87

5.8. Training time ... 88

5.9. Slack time and overtime .. 89

5.10. Learning effect on staff production rate ... 91

5.11. The im pact of staff exhaustion level on
staff production rate ... 93

5.12. The effect of schedule pressure on
staff production rate ... 95

5.13. Com parison of project progress of
the EXAMPLE project ... 98

5.14. Com parison of project cost of
the EXAMPLE project ... 99

5.15. Com parison of scheduled completion
date of the EXAMPLE project ... 99

5.16. Com parison of w ork force distribution
of the EXAMPLE project ... 100

6.1. The dynamics of Brooks' Law .. 105

6.2. M odeling sequential constraint .. 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.3. The im pact of w ork force stability on
project duration and cost ... 108

6.4. The im pact of degree of concurrency on
project duration and cost ... 110

6.5. Im pact of restaffing time on project duration, cost,
and num ber of needed work force .. 112

7.1. Planned w ork force d is tr ib u tio n .. 123

7.2. Staffing p lan stability .. 124

7.3. Com parison of FTE software personnel d istribution 124

7.4. Com parison of cumulative project effort ... 126

7.5. M odeling phase overlapping .. 128

7.6. Rework cost ratio .. 130

7.7. Three patterns of requirements change ... 130

7.8. Project duration increase due to requirem ents changes 133

7.9. Project effort increase due to requirements changes 134

7.10. The effects of phase overlapping on project effort
and developm ent cycle time ... 136

7.11. Determ ining the overall communication overhead 139

7.12. Intrateam and interteam communication overheads 140

7.13. Interteam interference amplification ... 142

7.14. Interteam-to-intrateam communication ratio 144

7.15. Project size change due to resolution of
interteam interferences ... 145

7.16. Project duration vs. num ber of teams
(low comm unication ratio M l) ... 151

7.17. Project effort vs. num ber of teams
(low comm unication ratio M l) ... 151

7.18. Project duration vs. num ber of teams
(m edium communication ratio M2) .. 152

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.19. Project effort vs. num ber of teams
(m edium com m unication ratio M2) ... 152

7.20. Project duration vs. num ber of teams
(high com m unication ratio M3) 153

7.21. Project effort vs. num ber of teams
(high com m unication ratio M3) 153

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

Table Page

4.1. Major com ponents of the CSE-SD m odel 62

7.1. Phase d istribution of project effort,
schedule an d personnel .. 117

7.2. The b reakdow n of project effort, schedule, and
personnel in the "Plan and Requirements" phase 119

7.3. The b reakdow n of project effort, schedule, and
personnel in the "Product Design" phase 119

7.4. The b reakdow n of project effort, schedule, and
personnel in the "Program m ing" phase .. 120

7.5. The breakdow n of project effort, schedule, and
personnel in the "Integration and Test" phase 120

7.6. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 0% 120

7.7. CSE-SD-equivalent activity d istribution of effort
(person-m onths) by phase: BRAK = 10% 121

7.8. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 20% 121

7.9. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 25% 121

7.10. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 30% 122

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.11. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK = 40% 122

7.12. Com parison of project effort (person-days) 125

7.13. N om inal project (R lxD l) w ith different
requirem ents change patterns ... 134

7.14. M odest phase overlapping (R2xD2) w ith different
requirem ents change patterns ... 135

7.15. Aggressive phase overlapping (R3xD2) w ith
different requirements change patterns .. 135

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1
INTRODUCTION

1.1 M otivation

C oncurrent engineering (CE) has been w idely adop ted an d has m ade

significant contributions to the electronics and m anufacturing industries in terms of

project cost and cycle time reduction, as well as p roduct quality im provem ent. The

software developm ent industry has begun to learn from the CE experiences as

practiced in other industries. Several software companies have significantly reduced

their project developm ent cycle time by applying a m odest degree of CE; for

example, Fujitsu's C oncurrent Developm ent m odel [12-19], M icrosoft's Daily Build

process [34-35], H P 's Platform Development m odel [44], concurrent

internationalization of software product for local m arkets [65], an d DuPont's

Timebox approach [54].

C oncurrent software engineering (CSE) shortens tim e-to-m arket b u t creates

new problem s in term s of coordinating multiple, concurrent activities. The extent of

benefits that CSE-based practices can deliver, their critical success factors, and the

potential high risk areas need to be assessed carefully.

1.2 Objectives and Expected Significance

The overall objectives of this research are: (1) to classify the unconventional

software developm ent paradigm s according to their concurrent software

engineering characteristics; and (2) to construct a system dynam ics m odel for

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2
assessing the benefits, and drawbacks, if any, of concurrent software engineering in

term s of project cost and developm ent cycle tim e reduction.

C oncurrent engineering (CE) principles have been adopted w idely and w ith

great success in the m anufacturing industry. A lthough som e CE principles are

being cautiously adopted by software producers, the potential benefits of CE m ay

no t be fully realized in the software industry. W e expect th a t this research will

construct a com prehensive system dynam ics m odel (called CSE-SD) that allows us

to system atically assess the benefits and potential risks in adopting CE principles in

softw are developm ent. It w ill advance the state of the art and practice of concurrent

softw are engineering and substantially im prove current software developm ent

practices in term s of project cost and developm ent cycle time reduction.

By calibrating the system dynamics sim ulation m odel against the data

collected from previous projects, the proposed m odel can be used as a m anagem ent

policy exploration tool for future projects. The m odel can help project m anagers

predict the possible outcomes of different m anagem ent policies, actions, or

decisions. The proposed concurrent software engineering system dynam ics (CSE-

SD) m odel can be em ployed to answ er questions such as: "W hat is the im pact of

concurrent developm ent on project cost and developm ent cycle time?"; "W ill

concurrent developm ent reduce project cost and developm ent cycle time?"; "U nder

w h a t situations w ill concurrent developm ent have the m ost leverage?"; "H ow

m any concurrent developm ent teams are suitable for the project?"; and, "W hat is

the optim al degree of concurrency in term s of project duration and cost?"

1.3 Research A pproach

In softw are engineering, it is rem arkably easy to propose hypotheses and

rem arkably difficult to test them. Accordingly, it is useful to seek m ethods for testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3
softw are engineering hypotheses [81]. Unfortunately, conducting experim ents in the

area of software developm ent is costly and tim e-consum ing [58]. C onducting exper­

im ents in software is difficult and problematic for several reasons. First, software

developm ent is a complex process, involving num erous factors w hich do no t rem ain

constant throughout the period of experimentation. It is difficult to control one factor

w hile keeping all other factors constant. Second, while the results derived from an

experim ent m ight be meaningful and useful to a specific environm ent an d context, it

is no t generally applicable to other environm ents and contexts. Third, controlled

experim entation is not feasible for large-scale projects due to the exponential grow th

in the num ber of factor combinations as the num ber of factors under stu d y increases.

S tudying the im pact of a new software developm ent m ethodology a n d /o r process

on schedule, quality, and cost in the developm ent of a large-scale system is infeasi­

ble, a lthough no t impossible. Finally, participating engineers generally have to

spend extra time reporting m easurements, w hich takes aw ay from the tim e they

spend on productive work.

In this research, we use the System Dynamics (SD) sim ulation approach to

study the im pact of concurrent software engineering on project cost an d develop­

m ent cycle time. System Dynamics refers to a quantitative m ethod to investigate the

dynam ic behavior of socio-technical systems and their responses to policy [77]. It

was developed by Jay Forrester in 1961 and, since then, has been applied to m any

different fields. A review of the approach and its application in software project

m anagem ent is presented in chapter 2.

Sim ulation models, like empirical cost-estimation m odels, can be used to pre­

dict the schedule and cost for future projects to be developed, once the m odels are

calibrated against specific developm ent environm ents and organizations. In a sim u­

lation-based experiment, the effect of changing one factor can be observed w hile all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4
other factors are held unchanged. Software project m anagers can easily assess the

im pact of different developm ent strategies and policies sim ply by changing the val­

ues of individual model param eters [7].

The proposed system dynamics model is calibrated according to three different

sources: (1) industrial or experimental data published in the literature; (2) interviews

w ith project m anagers in Fujitsu, and (3) data derived from the COCOMO cost esti­

m ation model.

The proposed system dynamics model CSE-SD can be used: (1) to sim ulate the

proposed developm ent process and various software project m anagem ent policies;

(2) to test the im pact of various assumptions, scenarios, and environm ental factors

on the software developm ent process; (3) to predict the consequences of m anage­

m ent actions on the interrelationships am ong software developm ent process compo­

nents and flows, and (4) to examine the sensitivity of the software developm ent

process to various internal and external factors [48].

1.4 O rganization of the Thesis

The rem ainder of this thesis is organized as follows. Chapter 2 presents funda­

mental principles of concurrent engineering as practiced in the m anufacturing

industry and identifies m ain reasons w hy they im prove the hardw are developm ent

process. Related w ork on the system dynamics approach and concurrent software

engineering practices are briefly reviewed in this chapter.

Chapter 3 presents a systematic classification of various concurrent software

engineering practices based on a proposed resource-activity-work product (RAW)

model. A detailed review of the state-of-practice concurrent software engineering

practices based on the RAW is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5
C hapter 4 presents a system dynam ics m odel for evaluating the im pact of con­

current softw are engineering practices. The benefits, potential risks, and critical fac­

tors, as well as the dynam ic cause-effect interrelationships of each type of CSE, are

discussed. These dynam ic cause-effect relationships serve as the basis from w hich

the proposed system dynamics m odel is developed. Finally, four related softw are

project system dynam ics models are review ed and com pared.

The results of m odel testing are presented in chapter 5. M odel testing is per­

form ed in tw o steps: unit-level testing and system-level testing. Unit-level testing

concerns the correctness of individual m odel sectors, w hile system-level testing inte­

grates and tests all m odel components. The m odel-sim ulated behaviors are com ­

pared w ith those of the Abdel-Hamid and M adnick m odel [7],

In chapters 6 and 7, w e conduct a set of sim ulation experim ents to fu rther dem ­

onstrate the capability of CSE-SD in generating useful inform ation and insights for

software project m anagers. Chapter 6 addresses the issue of project restaffing, and

testing the valid ity of Brooks' Law. Specific questions addressed in chapter 7

include: (1) the im pact of the phase overlapping concurrent developm ent approach on

project cost and developm ent cycle time; and (2) the im pact of the synchronous con-

ciirre?it subsystems developm ent approach on project cost and developm ent cycle

time.

The results of this research are concluded and sum m arized in chapter 8. A

num ber of questions and issues that m erit further study are also discussed. A

detailed specification of the CSE-SD m odel, including form al m odel equations, is

given in appendices A and B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter we present fundam ental principles of concurrent engineering as

practiced in the m anufacturing industry and identify the m ain reasons w hy they

im prove the hardw are developm ent process. Related w ork on the system dynam ics

approach and concurrent softw are engineering practices and fram ew ork are briefly

review ed in this chapter. A m ore detailed presentation of the state-of-practice con­

curren t software engineering practices based on a proposed resource-activity-work

p roduct (RAW) m odel is included in chapter 3. Related software project system

dynam ics m odels are com pared w ith the proposed CSE-SD m odel in chapter 4.

2.2 Concurrent Engineering

In this section, we review and define concurrent engineering and exam ine the

reasons for CE-based process im provem ents.

2.2.1 D efinition of Concurrent Engineering

Since it became a recognized technique in the mid-1980s, concurrent engineer­

ing (CE) has m ade significant contributions to the electronics and m anufacturing

industries in term s of project cost and cycle tim e reduction, as well as p roduct quality

im provem ent. Unfortunately, there is no well-accepted definition of CE. Some

researchers describe CE as a parallel design approach, while others em phasize the

cross-functional design team approach. For others, CE sim ply refers to a group of

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7
sound principles, contem porary techniques and novel methodologies that help

im prove the p roduct developm ent process. Some of the most-cited definitions of CE

are:

1. Concurrent engineering is a systematic approach to the integrated, concurrent

design of products and their related processes, including m anufacture and sup­

port. This approach is intended to cause the developers, from the outset, to con­

sider all elements of the product life-cycle, from conception through disposal,

including quality, cost, schedule, and user requirem ents [85].

2. The Com puter-aided Acquisition and Logistics Support program (CALS) defini­

tion of CE is "a systematic approach to creating a product design tha t considers

all elements of the product life cycle, from conception to disposal. CE defines

sim ultaneously the product, its m anufacturing process, and all other required

life-cycle processes, such as logistic support. CE is not the arbitrary elim ination of

a phase of the existing, sequential, feed-forward engineering process, bu t rather

the co-design of all dow nstream processes tow ard a more all-encompassing, cost-

effective optim um . Concurrent engineering is an integrated design approach that

takes into account all desired dow nstream characteristics during upstream

phases to produce a m ore robust design that is tolerant of m anufacturing and use

variation, at less cost than sequential design [27],

3. CE is a goal-directed effort, where "ow nership" is assigned m utually am ong the

entire group on the "total job" to be com pleted, not just a "piece" of it, w ith the

understanding that the team is em pow ered to m ake major design decisions along

the w ay [78].

4. CE is a p roduct developm ent methodology where up-front "X-abilities" (such as

manufacturability, serviceability, and quality) are considered part of the p roduct

design and developm ent process. X-abilities are not merely for m eeting the basic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8
functionality or a set of lim ited strategies, bu t for defining a p roduct tha t meets

all the custom er requirements [69].

5. Concurrent engineering is a term tha t has been applied since the 1980s to the

product developm ent process where, typically, a product design and its m anu­

facturing process are developed simultaneously, cross-functional groups are used

to accom plish integration, and the voice of the custom er is included in the prod­

uct developm ent process [76].

The above frequently cited definitions of CE and others ([41], [60]) spell out

four key characteristics of concurrent engineering: concurrency, integration, infor­

m ation sharing, and quality focus.

2.2.1.1 Concurrency

The tradem ark characteristic of CE is activity concurrency. In traditional p rod­

uct developm ent projects, each stage of the project is done sequentially, w ith the

functional groups "handing-off" the project to one another after an. extensive stage-

gate evaluation process [85]. A generic traditional sequential engineering (SE) pro­

cess is show n in figure 2.1. In SE, the p roduct design group, upon receipt of a com­

plete p roduct specification from the m arketing departm ent, perform s product

design in an environm ent isolated from all other departm ents. Only after a design is

verified, either by sim ulation or hardw are prototyping or both, is it handed off to

m anufacturing, test, quality, and service engineers for review [67].

Design flaws and test failures detected during m anufacturing are reported

back to the product design departm ent for diagnostics. The product design group

reworks the design and "tosses it over the wall" to the m anufacturing departm ent.

This redo-until-right practice, involving m any toss-it-over-the-wall rew ork itera­

tions, usually is a lengthy and costly process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9
CE replaces SE w ith sim ultaneous perform ance of activities. C oncept develop­

m ent, p roduct design, and process design are perform ed a t the sam e time. As show n

in figure 2.2, all dow nstream issues such as m anufacturability, quality, serviceability,

product perform ance, cost, and other dow nstream X-abilities are considered early in

the p roduct design stage. The "do-it-right-the-first-tim e" philosophy of CE replaces

the lengthy "redo-until-right" philosophy as practiced in SE.

Marketing Prototype Review TestProduct
Design

•Design group -

Functional i
Wall ♦

I. • Manufacturing departm ent ■

Figure 2.1. Traditional sequential engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

Serviceability

Downstream
X-abilities

“ P erform an ce

P rod u ct
D e s ig n •P rototyp e R ev iew an ufacture T est

M a n u fa ctu ra b ility

C o st

Q u a lity

Figure 2.2. Concurrent engineering.

2.2.1.2 In tegra tion

The second key characteristic of CE is integration: integration of design and

m anufacturing (design-m anufacturing integration) and integration of custom er and

design (m arketing-design integration) [76]. Integration refers to the up-front

involvem ent of personnel from different functional areas, including m arketing,

product design, process design, m anufacturing, service, or other relevant areas,

depending on the type of product.

Usually, the m echanism for accomplishing integration is the use of cross-func­

tional teams. People from m any departm ents collaborate over the life of a product-

from idea to obsolescence-to ensure that it reflects custom ers' needs and desires [67].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11
Team m em bers usually stay together physically. They are em powered to m ake

tim ely decisions in shaping the design, and are given ownership of w hat they pro­

duce, and are rew arded as a whole on a team basis.

2.2.1.3 Inform ation sharing

Inform ation sharing is another key characteristic of CE. Three form s of

inform ation sharing take place in CE-based projects: flying start, front loading, and

tw o-w ay inform ation exchange [21]. These three forms of information sharing are

identified based on the direction of inform ation flows between developm ent

phases.

Flying start is a preliminary inform ation transfer flowing from upstream

design activities to team members primarily concerned w ith downstream activities.

Early release of preliminary information supports CE by enabling dow nstream

activities to start earlier.

Front loading is the early involvem ent in product design activities of

dow nstream issues such as m anufacturing, testing, and service. Design techniques

and practices, such as design for m anufacturability and assembly (DFM/DFA),

design for testability (DFT), and other design for X-abilities, specify ways and

suggest rules to design products that are easy to m anufacture and test. For example,

"reducing the num ber of parts," "sim plifying the part m ating and securing

processes," and "creating symmetry or asym m etry so that it is difficult to p u t the

parts together in any manner bu t the correct w ay" are common DFA design rules

that consider downstream assembly processes early in the product design phase.

Two-way information exchange is intensive and rich communication between

team s w hile perform ing concurrent activities [21]. Teams involved in concurrent

developm ent of different subsystems (e.g., hardw are and software) need to have a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12
steady flow of inform ation am ong the groups to prevent potential integration prob­

lem s [21].

2.2.1.4 Q uality Focus

The forth key characteristic of CE is quality focus, both on the p roduct and on

the process that produces it. CE not only is concerned w ith quality control of the

product, b u t it also focuses on continuously im proving the process itself [74]. M any

techniques, such as total quality m anagem ent (TQM), quality function deploym ent

(QFD), just-in-tim e m anufacturing (JIT), statistical process control (SPC), and so

forth, are em ployed to ensure that quality standards and objectives are met. TQM

applies a se t of principles to focus continuous attention on quality a t every step of

design, developm ent, and m anufacturing [67], QFD m ethods are designed to listen

to the voices of customers [67]. A set of matrices relating subjective custom er desires

to quantitative engineering characteristics is em ployed to address the needs of the

custom er th roughout the entire product developm ent process.

CE seeks w ays to continuously improve product quality and process effective­

ness. Rather than try to find defects in finished products, statistical process control

(SPC) seeks to m onitor and correct drifts in quality in the m anufacturing process

[67]. CE continuously seeks w ays to improve the developm ent process (continuous

process im provem ent).

2.2.2 CE-based Process Improvement

The goal of concurrent engineering is to cu t project cost and developm ent cycle

tim e an d im prove product quality, all a t the sam e time. In this section, w e exam ine

the underly ing reasons behind CE-based process im provem ents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13
2.2.2.1 Cycle tim e reduction

CE reduces product developm ent cycle tim e (refer to Bone 1 of figure 2.3)

m ainly because of three reasons: concurrent activities (Bone 2), less rew ork (Bone 3),

and reacting to changes quickly (Bone 4). Activity concurrency is the m ajor force of

concurrent engineering. Concurrency of activities has contributed significantly to

the cycle tim e reduction in the m anufacturing industry ([67], [74]). The overall p rod­

uct developm ent cycle tim e is reduced because the steps along the w ay are handled

in parallel instead of series, as usual [67].

Rework is reduced m ainly because of two reasons: shorter rew ork loop (Bone

5) and few er requirements and design changes (Bone 6). CE shortens the rew ork

loop both by shortening the interval betw een the time defects are in troduced an d the

tim e they are detected (defect-to-correct distance, show n as Bone 7) and reducing the

num ber of rework iterations (Bone 8). Because of cross-function integration, prob­

lem s are identified early. Rework does not need to go through the lengthy toss-it-

over-the-wall iterations betw een design and manufacturing.

Requirements and design changes are fewer because of cross-function integra­

tion: design-m anufacturing integration and design-m arketing in tegration. Design-

m anufacturing integration allows dow nstream issues to be considered early (Bone 9)

in the product design stage (i.e., front loading information sharing). This leads to

early problem identification, an d a m ore robust and m anufacturable design. Design

changes are reduced w hen p roduct developm ent goes to the m anufacturing stage.

CE focuses on the needs of the custom er early and throughout the entire devel­

opm ent process (Bone 10). Early and continuous involvements of custom ers (design-

m arketing integration, or design-custom er integration) help the designer and the

custom er negotiate the requirem ents and arrive a t a stable p roduct specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14
early. Usually, QFD m ethods (Bone 11) are designed to make sure the voice of the

custom er is included in the p roduct developm ent process [76].

Another reason that CE reduces product development cycle tim e is its capabil­

ity to react quickly to changes (Bone 4). CE responds to changes quickly because of

the em pow erm ent of decision-m aking authority (Bone 12) and real-tim e com m uni­

cation am ong team mem bers (Bone 13). Em powerm ent of decision-m aking authority

allows team members to m ake timely decisions w ithout w aiting for long, upper-

m anagem ent approvals.

Real-time com m unication is facilitated by co-located cross-functional teams

(Bone 14). In a cross-functional team setting (Bone 15), team m em bers can discuss

different strategies to im plem ent the project and resolve problems together, instead

of com m unicating across isolated functional groups. Locating team m em bers close

together also facilitates communication.

2.2.2.2 Q uality Im provem ent

CE improves product quality (Bone 16) because of two m ain reasons: custom er

focus (Bone 17) and continuous process im provem ent (Bone 18). Quality, as defined

by the customer, is im proved because of early and continual custom er focus

throughout the entire developm ent process. Customer satisfaction is m axim ized

because their voice is echoed in every step of the development process.

Quality products come from quality processes. To produce a quality product

that maximizes customer satisfaction and minimize negative p roduct defects, CE

seeks ways to improve the process and focus continuous attention on quality at

every step of design, developm ent, and manufacturing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

Shorter rework
loop (5)

\
Fewer iterations (8)

Less rework (3) -

C ustom er_
focus (10)

CYCLE TIME REDUCTION (1)

Empowerment (12)

Shorter
defect-to-correct

distance (7)

Go-location (14)

Consider downstream
issues early (9)

OFD fl9i Fewer
' ' requirements/design

changes (6)

Less rework (20)

Lower
manufacturing/assembly cost (22)

Design
for X-abilities (24)

COST REDUCTION (19)

Customer focus (17)

React to changes
quickly (4)

Cross-function team (15)

Real-time
communication (13)

Concurrent activities (2)

Shorter development
cycle time (21)

Just-in-time
Continuous

process improvement (18)
manufacturing (23)

CE-BASED
IMPROVEMENT

QUALITY IMPROVEMENT (16)

Figure 2.3. A fish bone diagram for the reasons of CE-based
process improvement.

2.2.2.3 Cost Reduction

CE cuts project cost (Bone 19) m ainly because of four reasons: less rew ork

(Bone 20), shorter development cycle tim e (Bone 21), lower dow nstream m anufac­

turing and assembly cost (Bone 22), and just-in-time m anufacturing (Bone 23).

Less rework not only contributes to the reduction of developm ent cycle tim e,

bu t also helps to cut developm ent cost. Design flaws are detected early in the p ro d ­

uct design stage, and they are corrected w ith less cost. By focusing on the needs of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16
the custom er early, requirem ents changes and defects are reduced. W ith the reduced

am ount of rew ork tasks because of fewer changes and design flaws, project cost also

is reduced.

The philosophy of "Design for X-abilities" (Bone 24) helps to produce a prod­

uct design that is easy to m anufacture, assemble, and test. For example, the DFA

rales such as "reducing the num ber of parts" and "sim plifying the p a rt m ating and

securing processes" help to simplify the assembly process. This sim plification has

the effect of reducing direct assem bly costs, and often tends to reduce indirect costs

such as incom ing inspection and parts inventories [76].

Just-in-time (JIT) m anufacturing m ethods provide com ponents and assemblies

as they are needed. These com ponents and assemblies m ake it unnecessary to m ain­

tain large inventories, and thus help to cu t costs [67].

2.3 C oncurrent Softw are Engineering

Despite its w ell-know n problem s, the sequential Waterfall m odel still is the

softw are developm ent process m odel m ost comm only used. In this section, we

review literature that reports successes in applying CE principles to the software

engineering community. We define concurrent software engineering (CSE) as a

developm ent process and m anagem ent practice that (1) helps to cut project cost and

developm ent cycle time, and improve product quality; and (2) possesses the four

key characteristics of CE: concurrency, integration, inform ation sharing, and quality

focus.

2.3.1 Concurrency

D riven by the increasing pressure to bring new products to m arket faster, m any

software companies have practiced concurrent engineering. Examples include:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17
Fujitsu 's Concurrent Developm ent Model [12-19]; M icrosoft's Daily Build process

[34-35]; H P 's Platform Developm ent Model [44]; concurrent internationalization of

global software developm ent [65]; concurrent developm ent of real-time system s [62-

63]; and Parallel Timeboxes to the developm ent of inform ation system s [54].

Phase overlapping, as practiced in the hardw are developm ent industry, is not

com m only practiced in software industry due to the unstable front-end of the soft­

w are developm ent life-cycle.

2.3.2 Integration

The "walls" am ong different functional areas (e.g., design and m anufacturing)

are taller in CE than in CSE. In CE, for example, designers (white collars) and m anu­

facturers (blue collars) usually speak different dom ain languages, and have different

thinking and backgrounds. Software developm ent is a m ore creative endeavor;

therefore, m ost of the participants of a software developm ent project are w hite col­

lars. The differences am ong the different experts (e.g., requirem ents analysts, design­

ers, program m ers) are less significant than those in CE. For example, a program m er

m ay do some dom ain analysis and analysts m ay do som e program m ing (prototyp­

ing is an example).

Incorporating expertise from different disciplines in CSE is easier than in CE. A

cross-functional team ing approach has been practiced in the software developm ent

industry. For example, Microsoft's "feature teams" practice has contributed to the

successful developm ent and delivery of Visual C++ [55]. AT&T's "application devel­

opm ent teams" approach has helped the company make on-tim e deliveries of m ulti­

ple releases of a telecom munication software system [73]. Xerox's "chunking teams"

practice has contributed to the successful developm ent of the Inconcert workflow

m anagem ent system [1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18
2.3.3 Information sharing

The "front loading" type of information sharing currently is being practiced in

the software developm ent dom ain, as well. Examples include "design for testability"

([46], [51], [82]) and "design for reusability" [66]. The objectives of design for test­

ability are to reduce the cost and complexity of tests. Early consideration and estima­

tion of testability in the design phase helps designers identify parts of the

specification that are hard to test; then appropriate transform ations can be proposed

to enhance testability of the end product. Designing for large-scale reuse addresses

the need for h igher productivity in domain-specific application dom ains or product

families.

The "tw o-w ay information exchange" type of inform ation sharing has been

practiced in software development, in particular, in firmware development. Teams

or individuals involved in concurrent developm ent of the hardw are and the soft­

w are com ponent need to have a steady flow of inform ation betw een them to prevent

potential integration problems. Use of the "flying start" type of inform ation sharing

to support overlapping software development, however, is not a com m on practice in

software development.

2.3.4 Quality Focus

Global competitiveness has forced many companies to view quality improve­

m ent as a vital task [40]. Like CE, the software developm ent industry has begun to

apply quality-oriented techniques to improve the quality of both the product and the

process. Specifically, software developm ent organizations endeavoring to improve

the quality of software systems (by improving the quality of the software develop­

m ent process) recently have adapted QFD for the developm ent of software ([25],

[32], [39-40], [70], [71-72], [86]), especially during the requirem ents analysis phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19
Im plem enting QFD techniques to the front-end of the softw are developm ent life

cycle can lead to effective com m unication w ith users, few er design changes, and

increased analyst and program m er productivity [40].

In sum m ary, the softw are developm ent industry has recognized the potential

benefits of concurrent engineering and cautiously applied it from different aspects

and for different purposes. Phase overlapping and the "flying start" type of inform a­

tion sharing, however, are n o t com m on practices in software developm ent, because

of the unstable front-end.

2.3.5 Concurrent Softw are E ngineering Fram ework

Blackburn et al. [21] proposed a fram ework for concurren t software

engineering based on C lark and Fujimoto's inform ation processing fram ew ork for

supporting overlapping problem solving activities [28]. The B lackburn fram ework,

as show n in figure 2.4, distinguishes four types of activity concurrency (within-

stage overlap, across-stage overlap, hardw are/softw are overlap, an d across-project

overlap) and three form s of inform ation concurrency (front loading , flying start,

and two-way high bandw id th inform ation exchange) [21].

Situated betw een activity concurrency and inform ation concurrency are

practices of "architectural m odularity" and "synchronicity." Architectural

m odularity, a critical issue for "w ithin-stage overlap" and "across-project overlap,"

is supported by front loading. Front loading (inform ation abou t possible design

changes, customer requirem ents, and reuse concerns) helps developers design m ore

robust and m odular system architectures w ith reusable m odules.

Synchronicity is identified as a critical issue for the other tw o form s of activity

concurrency: "across-stage overlap" and "hardw are /so ftw are overlap."

O verlapping developm ent an d firmware developm ent increase the degree of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20
coupling betw een overlapped phases and between hardw are and software

designers. Their w ork m ust be coordinated and synchronized to avoid late

integration problems.

Poor problem decom position and m odule designs increase the need for

synchronizing concurrent activities within-stage (indicated as dotted line from

synchronicity to within-stage overlap). Synchronicity is supported by all three types

F l y i n g
S t a r t

F r o n t
L o a d i n g

S y n c h r o n i c i t y

A r c h i t e c t u r a l
M o d u l a r i t y

A c r o s s S t a g e
O v e r l a p

H a r d w a r e /
S o f t w a r e
O v e r l a p

W i t h i n S t a g e
O v e r l a p

A c r o s s P r o j e c t
O v e r l a p (R e u s e)

T w o - W a y
H i g h B a n d w i d t h

F l ow

Figure 2.4. The Blackburn CSE framework.

The Blackburn CSE fram ew ork provides a coherent fram ew ork for CSE to

m ove from ad hoc, reactive practices to proactive project m anagem ent. H ow ever, the

Blackburn fram ew ork is not appropriate to serve as a reference fram ew ork for our

proposed system dynamics study, for two reasons. First, it considers only activity

and inform ation flow between activities; and other im portant issues, such as hum an

resource and workload assignm ent, are not addressed. Second, it focuses on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21
developm ent cycle time instead of the quality im provem ent an d cost reduction

potential of CE.

To guide the construction of the CSE system dynamics m odel, a m ore general

and com prehensive framework is needed. In chapter 3 we classify different types of

concurrency based on a proposed resource-activity-work p roduct model. The

benefits an d potential risks of each type of concurrency are presented in chapter 4.

Then, based on the classification and cause-effect analysis of CSE, a com prehensive

system dynamics simulation m odel is constructed to quantitatively assess CSE.

2.4 System Dynam ics

System Dynamics (SD) refers to a quantitative m ethod to investigate the

dynam ic behavior of socio-technical systems and their responses to policy [77]. The

field of system dynamics was developed initially from the w ork of Professor Jay W.

Forrester in 1961 [36] as Industrial Dynamics and is defined as follows:

The study o f the infbrmation-feedback characteristics o f industrial activity to show

how organizational structure, amplification (in policies), and time delays (in deci­

sions and actions) interact to influence the success o f the enterprise [36].

Since then, the application of SD has grow n extensively and now encompasses

num erous fields such as economics and finance, biology and m edicine, corporate

planning and policy design, transportation, banking, politics, energy and environ­

m ent, and inflation and unemploym ent.

The fundam ental philosophy of system dynamics is based on the prem ise that

the behavior (or time history) of a system is caused principally by its underlying

structure [9]. The general idea of SD can be described as consisting of three major

steps: (1) eliciting im portant objects and variables, both tangible an d intangible, that

are believed to be responsible for generating the observed behavior; (2) identifying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22
their cause-effect relationships; and (3) constructing a quantitative m odel that

encompasses and links all cause-effect feedback loops and analyzes the system as a

whole. SD takes advantage of the fact that a com puter m odel can be of m uch greater

complexity and carry out more sim ultaneous calculations than can the m ental m odel

of the hum an mind.

Recently, the System Dynamics m odeling technique has been applied to the

software project m anagem ent dom ain as well. The w ork of A bdel-H am id and Mad-

nick ([2], [7]) represents one of the first applications of SD in this area. O ther works

include Lin and Levary [48], Cooper [30-31], M adachy [52-53], Collofello and Tvedt

[79-80], Rodrigues and Williams [68].

Cooper applied System Dynamics to software developm ent projects w ith a

focus on assessing the impacts of "w ork quality" and "rew ork discovery time" based

on the generic concept of the rework cycle [30-31]. Their findings suggest tha t lower­

ing rew ork discovery time is m ost leveraged in im proving project schedule perfor­

mance w hen quality is not at extremely low or extremely high levels [30]. Under

low-quality conditions, software project m anagers should w ork first on quality

im provem ent practices and systems such as early specification and design reviews,

then accelerate rew ork discovery.

Rodrigues and Williams [68] proposed to integrate System Dynamics w ith tra­

ditional project m anagem ent techniques to support the m anagem ent of on-going

projects. This is different from the conventional use of the system dynam ics tech­

nique in w hich SD models are calibrated against com pleted projects and the diagno­

sis results from SD models are used to provide guidance for future project

developments. In their work, the SD m odel is em ployed to assess the current plan,

identify potential risks, diagnose segments of past behavior, and help identify causes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23
for deviations. The SD m odel is recalibrated to reproduce segm ents of past project

behavior an d provide new estimates for future behavior.

In sum m ary, the above works represent im portant contributions for the appli­

cation of SD to software project m anagem ent. W hether it provides on-going

dynamic support for the current project or postm ortem analysis to provide guidance

for future projects, SD has been found to offer im portan t benefits to the analysis of

software developm ent project management. We will review the other four SD m od­

els (Abdel-Ham id and Madnick, Lin and Levary, Collofello and Tvedt, and

Madachy) in m ore detail and compare them w ith the proposed CSE-SD m odel in

section 4.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3
CONCURRENT SOFTWARE ENGINEERING FRAMEWORK

3.1 Introduction

In this chapter we present a systematic classification of different types of CSE prac­

tices based on a conceptual Resource-Activity-Work product (RAW) model. The pro­

posed RAW m odel provides the basis for us to define "concurrency," identify different

relationships that exist among resources, processes, and products, and, most impor­

tantly, to classify different types of CSE practices. In chapter 4, we will identify the bene­

fits and potential risks of each type of CSE practice, then construct a system dynamics

simulation m odel to quantitatively assess their impact.

The rem ainder of this chapter is organized as follows. Section 3.2 presents the pro­

posed RAW m odel based on three entities: hum an resource, development activity, and

work p ro d u c t A classification of different types of CSE practices based on the RAW

model is presented in section 3.3. We review and present state-of-the-practice CSE prac­

tices using the RAW model in section 3.4.

3.2 A RAW M odel

Three entities are of concern: process, product, and resource [26]. These entities

represent essential perspectives that most of the software process models need to cap­

ture. Processes are collections of all activities that are required to design and implement

the software product. Requirements analysis, high-level design, detailed design, coding,

test planning, and system integration and testing are common activities for any nontriv­

ial software developm ent projects. Products are any artifacts that are produced by

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25
processes. For example, the "requirements specification" document is the work product

produced by the "requirements analysis" activity. Resources are any items used by pro­

cesses, excluding products of other processes. H um an resources, for example, are the

m ost im portant resource for any software development project

We present a conceptual Resource-Activity-Work product (RAW) model to capture these

three essential perspectives. The model considers the three entities at the same time and

treats them as one integrated object

RAW objectInformation flows
from upstream to downstream<R1, A l, Wl>

Case 1.1 Information flow

Typel Case 1.3 Type 3
R2 and R4 compete with each otherTwo-way \

information flo<
Case 3.1

Case 1.2 Case 3.2
Information flows

from dow nstream to upstream
<R2, A Z W l> R2 and R4

cooperate with each other

TypeO Wl and VV2
may be dependent

on each other
Case 2.2Case 2.1 Case 2.3

Wl
depends on

W2

Type 2
Wl and W2

are independent
W l and W2

are interdependent

<R3, A2, W2>

Figure 3.1. A conceptual resource-activity-work product model.

By treating hum an resources, development activities, and work products as one

integrated object, we identify four major types of relationship between any two RAW

objects, from Type 0 to Type 3, as illustrated in figure 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26
The "Type 0" relationship (e.g., between <R1, A l, W l> and <R3, A2, W2>) cap­

tures the situation in which different teams or individuals (R1 and R3) perform different

activities (A l and A2) on different work products (Wl and W2). However, W l and W2

may depend on each other. Here, the "R" component of the RAW object is coded as 0

(because of different hum an resources R1 and R3), the "A" com ponent is coded as 0

(because of different activities A l and A2), and the "W" is coded as 0 (because of differ­

ent work products). Note that "0" means "different" while "1" represents "the same."

The "Type 1" relationship (e.g., between <R1, A l, W l> and <R2, A2, W l>) cap­

tures the situation in which different teams or individuals (R1 and R2) perform different

activities (A l and A2) on the same work product (Wl). The Type 1 relationship can be

further classified into three cases:

• Case 1.1: A2 depends on A l. An instance of this inter-RAW relationship is the tradi­

tional waterfall model, where information flows from the upstream phases to dow n­

stream phases. For example, design teams pass design specification to coding and

testing teams for implementation and testing.

• Case 1.2: A l depends on A2. Information flows from downstream phases toupstream

phases. An example of this situation is "design for testability," where testing issues

are considered in the design phase.

• Case 1.3: A l and A2 are interdependent Information flows are bidirectional.

The "Type 2" relationship (e.g., between <R2, A2, W l> and <R3, A2, W2>) captures

the situation in which different teams or individuals (R2 and R3) perform the same

activity (A2) on different work products (W l and W2). Type 2 can be further classified

into three different cases:

• Case 2.1: W l and W2 are independent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27
• Case 2.2: W l depends on W2 (or W2 depends on W l). As an example, W2 is a pro­

gram m odule that calls another module W l (i.e., W2 depends on W l). Any changes

to the interface of module W l causes m odule W2 to be reworked, since it is affected.

• Case 2.3: W l and W2 are interdependent

The "Type 3" relationship (e.g., between <R2, A2, W l> and <R4, A2, W l>) cap­

tures the situation in which different teams or individuals (R2 and R4) perform the same

activity (A2) on the same work product (Wl). The "Type 3" relationship can be divided

into two cases, depending on how the two hum an resources are related to each other.

• Case 3.1: R2 and R4 compete with each other. They usually have the same skills or

belong to the same functional groups. For example, two different programmers work

on a shared program module. Concurrent updates to a common module m ay violate

the integrity of that module.

• Case 3.2: R2 and R4 cooperate with each other. They usually have different skills or

are members of different function groups. An example of this case is w hen members

of a cross-functional team work on product design. For example, marketing special­

ists work w ith designers in drafting requirements specification for a new p roduct

3.3 A C lassification o f CSE M odels

In this section, we classify CSE practices into different types based on the RAW

model. We review state-of-the-practice CSE practices and demonstrate how they can be

represented by the RAW model. To classify concurrent software development practices,

we extend the RAW model with another dimension-time.

D efinition. Each RAW object has a start time Ts and a finish time T f . A RAW object is

said to be active during the interval of [Ts, T f] .

D efinition. Concurrency occurs when two RAW objects have overlapping active

intervals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28
3.3.1 Type 1 Concurrency

Type 1 concurrency occurs when the two RAW objects w ith Type 1 relationship

overlap, as illustrated in figure 3.2. In Type 1 concurrency, different hum an resources

perform different activities on the same work product at the same time. Phase overlap­

ping (PO) is an example of Type 1 concurrency. PO overlaps consecutive development

phases such as requirements and design. The requirements analysis group performs

requirements analysis and passes a "partially complete" requirements specification to

the design group. The design group performs architectural design based on the specifi­

cation. Since the two groups perform different activities a t the same time, it is an

instance of Type 1 (RAW = 001) concurrency.

information flow

information flow

<R2, A2, W l>

<R1, A l, W l>

. ---^ TIME

Figure 3.2. Type 1 concurrency.

3.3.2 Type 2 Concurrency

Type 2 concurrency occurs w hen the active intervals of two RAW objects with

Type 2 relationship overlap. As depicted in figure 3.3, in Type 2 concurrency, different

hum an resources groups (R1 and R2) perform the same activity (A2) on different work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29
products (W1 and W2) a t the same time. In Type 2 concurrency, a system is partitioned

into subsystems and assigned to different developers or teams for concurrent develop­

m en t However, system decomposition can occur at different stages, such as the require­

ments analysis stage, the high-level design stage, and the detailed design stage. An

example of requirements-stage system decomposition is Fujitsu's Concurrent Develop­

m ent practice [12-19]. In the development of a large-scale telecommunication software

system, each release is decomposed into multiple subsystems (called enhancements) at

the early stage of the development life cycle and assigned to different teams for concur­

rent development. We present a more detailed review of the Concurrent Development

practice in section 3.4.1.

Another example of Type 2 concurrency is the traditional practice of activity con­

currency in the detailed design stage, where "modules" usually are implemented by dif­

ferent programmers. They perform the same activity (i.e., coding) on different modules

at the same time. Therefore, it is a Type 2 concurrency. However, the RAW object is

defined at a lower level in which the "R" component refers to individual programmers,

the "A" component refers to the coding activity, and the "W" component refers to indi­

vidual program modules.

< R 1 , A l , W l > Vr
C o m m u n i c a t i o n b e c a u s e of
p o s s i b l e i n t e r - d e p e n d e n c y
b e t w e e n W 1 a n d W 2

< R 2 , A l , W 2 > £
- ► T I M E

Figure 3.3. Type 2 concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30
3.3.3 Type 3 concurrency

Type 3 concurrency occurs when the active intervals of two RAW objects w ith

Type 3 relationship overlap. As depicted in figure 3.4, in Type 3 concurrency, different

hum an resources (R1 and R2) perform the same activity (Al) on the same work product

(W l) at the same time. An example of Type 3 concurrency is Joint Requirements Plan­

ning (JRP) [54]. JRP involves all interested stakeholders, such as business executives,

project managers, and key end-users, to define system requirements and perform high-

level design. In this case, different people (with different skills and interests) perform the

same activity (i.e., requirements planning and specification) on the same work product

(i.e., the entire system).

Another example of the Type 3 concurrency is w hen two different programmers (R

= 0) update (A = 1) the same program source file (W = 1) a t the same time (i.e., RAW =

Oil). These two programmers are in a position of competing with each other. If their

w ork is not coordinated and synchronized., their efforts m ight conflict with each other,

other. This is different from the JRP where people are in a position of cooperating with

one another.

R1 a n d R 2 c o u l d c o m p e t e o r
c o o p e r a t e w i t h e a c h o t h e r

< R 2 , A l , W l >

< R 1 , A l , W l >

--- ► T I M E

Figure 3.4. Type 3 concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31
3.3.4 Type 0 concurrency

Type 0 concurrency occurs when the active intervals of two RAW objects with

Type 0 relationship overlap. As depicted in figure 3.5, in Type 0 concurrency, different

hum an resources (R1 and R2) perform different activities (Al and A2) on different work

products (W1 and W2) a t the same time. Type 0 (RAW = 000) concurrency is congruent

w ith Type 2 (RAW = 010) concurrency (i.e., Synchronous Concurrent Subsystems con­

currency). In the "Synchronous Concurrent Subsystems" (SCS) concurrency, different

individuals or teams perform the same activity on different work products (i.e., RAW =

010). The development process is "synchronized," since they all perform the same activ­

ity (e.g., design) a t the same time. However, w hen two individuals or teams progress at

a different pace, the SCS concurrency transforms into an Asynchronous Concurrent Sub­

systems (ACS) concurrency. While one team is working on high-level design, the other

team m ight progress to the detailed design or coding stage. Since they are performing

different activities at the same time, therefore, the "A" component of the RAW object is

changed to 0 (i.e., RAW = 000).

< R 1 , A l , W l >

< R 2 , A 2 , W 2 >

C o m m u n i c a t i o n b e c a u s e o f
p o s s i b l e i n t e r - d e p e n d e n c y
b e t w e e n W 1 a n d W 2

- ► T I M E

Figure 3.5. Type 0 concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32
We use RAW objects as a basis to classify concurrency into four types, namely,

Type 0 (RAW = 000), Type 1 (RAW = 001), Type 2 (RAW = 010), and Type 3 (RAW = 011).

However, the other four RAW combinations with the "Resource" component equals to 1

(i.e., 100,101,110, and 111) are no t considered because of the following reason. The RAW

model is a general model that can depict any software process models, not just the con­

current development model. W hen the Resource component equals to 1, it is indeed a

sequential model because truly concurrency is that one single resource can perform one

activity at a time.

3.4 State-of-the-Practice CSE Practices

Although concurrent engineering of software products is not a common practice in

the software industry, there are a few CSE-based practices that have been used and

proved effective. In this section we will review some of them and justify how the RAW

model can depict them effectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

Type 2

i axe 2. /Type 2

Type 0

Design Team A
designs/implements

Enhancement 2.1

Design Team C
designs/implements

Enhancement 2.2

Design Team A
desi gns/i mplements

Enhancement 1.1

Test Team 2
tests

Release 1 (Copy 2)

Test Team I
tests

Release I (Copy 1)

Design Team C
designs/implements

Enhancement 1.3

Design Team B
designs/implements

Enhancement 1.2

Test Team 3
tests

Release I (Copy 3)

System Integration
- Team integrates all

enhancements in
Release 1

System Integration
Team integrates all

enhancements in
Release 2

Figure 3.6. The Fujitsu concurrent developm ent model.

3.4.1 Concurrent Developm ent Model

One of the first successful experiences of CSE-based practice is Fujitsu's Con­

current Developm ent Model (CDM) [12-19]. The CDM has been used in the develop­

m ent of a large-scale communication software system . It enables m ultiple small

teams to w ork concurrently on different enhancem ents in a release. M ultiple

enhancem ents that are concurrently developed by different team s are incrementally

integrated, tested, and delivered to the customer as a release.

A RAW-based representation of the CDM is show n in figure 3.6. As the figure

shows, there are three concurrency situations in CDM, namely, Type 2, Case 2.1, and

Type 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34
• Type 2 Concurrency. In Type 2 concurrency, different teams develop (i.e., design,

implement, and perform pre-integration tests on) different enhancements a t the same

time. The enhancements developed by different teams usually are related to each

other in certain degrees.

• Case 2.1 Concurrency. W hen all the enhancements w ithin a release are integrated,

they are distributed to different testing teams to conduct concurrent testing.

Although these testings are performed on the same release, they are no t on the same

copy. Therefore they belong to Case 2.1.

• Type 0 Concurrency W hen the development teams finish the developm ent of their

responsible enhancements, they move on to work on one of the enhancements of the

next release. Therefore, the integration of Release 1 performed by the integration

team occurs a t the same time as the development of Release 2 perform ed by the

development teams. Since they work on different work products (i.e., Release 1 and

2), their efforts belong to Type 0.

3.4.2 Concurrent Internationalization

Another CSE practice that has been used in the development of global software

products is Concurrent Internationalization (Cl) [65]. Traditionally, the development of

global software products involves three major phases, namely, base-product engineer­

ing, internationalization, and localization. These three phases have been done sequen­

tially in the p ast After the completion of the base-product version, it m ust be adapted to

local m arket conditions. Depending on the specific circumstances, this adaptation can

involve minor or major changes to the base product For example, this adaptation may

require changes in user interfaces, messages, online help, language components, and

even software structure. Incorporating such changes sequentially after developing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35
base product requires substantial rework and therefore extends die local version's time-

to-m arket

Due to the ever shrinking-windows of m arket opportunities, software product

vendors are seeking ways to reduce the time-to-market of local versions of global soft­

ware products. Concurrent internationalization has been proved to be effective in this

regard.

P ratJuc r /
*a-

B as e - p r a d u c t

base p ro d u c t l o c a l
m a r k e t c o n d i t i o n s

H < t\e I ' r i t J u c l I c t t m

In te rn a t io n a l i z a t i o n

ad ap te d
b ase p r o d u c t

loca l
m a r k e t c o n d i t i o n s

l.ucal brtnim

Loca l iza t ion

Figure 3.7. Concurrent internationalization of global
software products.

Figure 3.7 shows a RAW representation of the C l practice. As illustrated in the fig­

ure, there are two concurrency situations in Cl, namely, Case 1.1 and Case 1.2.

• Case 1.1 Concurrency. In this situation, two RAW objects overlap, and the informa­

tion flows from upstream activities (i.e., base-product engineering) to downstream

activities (i.e., Iocal-product engineering). This is an example of phase-overlapping

concurrency.

• Case 1.2 Concurrency. In this situation, two RAW objects overlap, and the informa­

tion flows from downstream activities (i.e., Iocal-product engineering) to upstream

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36
activities (i.e., base-product engineering). By considering local market conditions and

circumstances, the base-product development team is able to design a flexible soft­

ware architecture that can be adapted to any local languages and market conditions.

3.4.3 Platform Development Model

The Platform Development Model (PDM) is a m atrix of conceptual models for

supporting platform development [44]. The objectives of the PDM are (1) to structure the

development process of a family of similar products in such a way that the time-to-mar-

ket of each product and the time-between-successive-products are minimized, and (2) to

achieve an appropriate level of consistency across these products.

Instead of developing multiple, closely related products independently, the PDM

seeks to identify and separate out common elements contained within a software prod­

uct family and p u t them into the platform. The platform, once developed, provides a

basis for value-added, differentiating features for different products within a product

family.

An essential element of the PDM is the "platform and product life cycles," as

shown in figure 3.8. The major phases of the "platform life cycle" include platform

requirements definition, feasibility validation, architecture definition, platform develop­

ment plan, infrastructure development, code construction, and platform integration test

The "product life cycle," which relies on the platform life cycle, has a similar underlying

structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

P la tfo rm life cycle

D e liv e ra b le *

P r o d u c t I l i fe cycle

I n p u t a n t i
F e c i ib a c L

P r o d u c t 1 l i fe cycle

Atiupi

Figure 3.8. The platform developm ent m odel.

There are essentially three concurrency situations in the platform development

model:

• Type 0: The platform team and the product team perform different activities on differ­

ent work products. For example, the platform team performs the "feasibility valida­

tion" activity on platform a t the same time that the product team conducts the

"product requirements definition" activity on product-unique features.

• Cases 2.2 and 2.3: The situation where the implementation phase of the platform life

cycle overlaps the product implementation work is an instance either of Case 2.2 or

Case 2.3 concurrency, depending on how the modules and code components in

the platform and the product are related. Although Case 2.1 inter-RAW relationship

exists between the platform and product teams, it is a sequential relationship. For

example, the platform architecture and code components flow from the platform

team to the product team after they are completed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38
• Type 2: The Type 2 concurrency occurs between, for example, product team 1 and

product team 2 because they perform the same activity (e.g., platform architecture

instantiation) on different work products (i.e., products 1 and 2). Since the work prod­

ucts perform ed by two product teams usually do no t depend on each other, Case 2.1

concurrency therefore dominates.

3.4.4 Parallel Tim ebox Development

Another CSE practice being used in the development of data m anagem ent applica­

tions is the Parallel Timebox Development (PTD) practice [54]. As illustrated in figure

3.9, the PTD practice consists of four major phases, namely, requirements planning, user

design, construction, and cutover. There are two concurrency situations in the PTD prac­

tice:

• Type 3: The first two phases (i.e., requirements planning and user design) of a PTD

process involve all interested stakeholders, such as business executives, project m an­

agers, and key end-users, to define system requirements and perform high-level

design. This is an example of Type 3 concurrency, that is, different function groups

work on the same activity (either requirements planning and specification or high-

level design) on the same work product (i.e., the entire system). After the joint

requirements planning session, a central "coordinating model" is built, from w hich a

project is partitioned. The coordination model consists of a normalized data model, a

tree-structured process decomposition diagram, a process dependency diagram, data

flow diagrams, and a process/data matrix.

• Type 2: In PTD, a project is decomposed into subprojects and assigned to different

small SWAT (Skilled With Advanced Tools) teams for concurrent development. To

manage concurrent development and make sure each SWAT team completes its share

of work a t approximately the same time, a rigid developm ent time (i.e., timebox)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39
framework is set for all the SWAT teams. Since different teams perform the same

activity (i.e., design, implementation, and unit test) on different subprojects a t the

same time, it is a Type 2 concurrency. The interfaces among the subsystems are

defined by the coordinating model.

Joint Requirements Planning

Und Users

Type 3

and Users

^ Uevelooi

Executives ~
Type 3

Joint Application Design

Type 2 C u to v e r T eam te s t th e
s y s te m /tra in u sers

SW A T T eam B
c o n stru c t

S ub sy stem 2

S W A T T eam A
co n stru c t

S u b sy stem I

SW A T T eam C
co n stru c t

S ub sy stem 3

id en tify
requ irem en ts

d e sig n th e sy s te m

Figure 3.9. The parallel timebox development practice.

3.4.5 Hardwar e-Software Co design

Another CSE approach to the development of embedded software systems (i.e.,

firmware) is hardware-software codesign practice. As opposed to the traditional firm­

ware development process, in which hardware and software engineers work separately,

codesign involves both communities and integrates their work. A typical design process

begins with functional exploration, in which designers define a desired product's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40
requirements and produce a specification of the system 's behavior. Hardware and soft­

ware designers map this specification onto various hardw are and software architectures.

They then partition the functions between silicon and code and map them directly to

hardware and software components. During implementation, designers either reuse or

design hardware and software components. Finally, they integrate the system for proto­

type testing [37].

The hardware-software codesign practice is a combination of Type 3 and Case 2.3

concurrency, as illustrated in figure 3.10, depending on how hardware and software

engineers work together.

• Type 3: In codesign, functional exploration, architectural mapping, and hardware-

software partitioning involve both functional communities a t the same time. This is

an example of Type 3 concurrency in that different functional groups perform the

same activity (e.g., function exploration) on the same work product (i.e., the entire

system).

• Case 2.3: In the implementation stage, hardware and software engineers work on

hardware and software components, respectively. This is an example of Type 2 con­

currency. Specifically, since the work product performed by both communities has

strong relationships, Case 2.3 applies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

/ AIK hnvtn

'S H W 1'jiyrrtcuri

F u n c tio n a l
E x p lo ra tio n

A rc h ite c tu ra lA rc h ite c tu ra l ^
M app ing

 b '
Softwares .Sly /:nvrncrr\ S o ftw a re

yp* t / 1̂ r iw knem ecrs -x7! Im p le m e n ta tio n - /

——• „ H W /S W L j — ^ / (C e Z i -------- / j
P a rti tio n in g \ j / s W U n J c Z n S \

* H a rd w a re _ /

/ .SW Hnvmccrx /

S y s te m
I n te g ra tio n

H a rd w a re _
Im p lem e n ta tio n
____________ K

Figure 3.10. H ardware-software codesign.

3.4.6 The IPTES Approach

Incremental Prototyping Technology for Embedded real-time Systems (IPTES) is a

CE approach to the development of embedded software systems [62-63]. Central to the

IPTES approach is the concept of heterogeneous prototypes. A "heterogeneous proto­

type" is an executable system model whose different parts may be specified a t different

abstraction (modeling) levels, and yet they can be executed together as a total system.

Models communicate through shared elements, such as data-flows, data-stores, operat­

ing system communication primitives, and procedure calls [62].

With IPTES, there could be several teams working simultaneously w ith different

heterogeneous prototypes. A development team can use intermediate results from other

teams for testing and validating their own work. Each of the development teams may

use relatively abstract models of the other parts of the system as a testbed (either stubs

or drivers) for their own part, yet they can proceed w ith developing their p a rt a t full

speed by means of advancing the maturity of their part to the next abstraction level(s).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42
As show n in figure 3.11, the concurrent threads of developm ent activities are orga­

nized around levels of risk. The development process includes multiple concurrent

traces, where each trace corresponds to a thread of engineering activities. High-risk ele­

ments are prototyped and specified. Concurrent with the design and implementation of

high-risk threads, the medium-risk elements are being specified. Later in the process,

the developm ent of activities of different risk-level proceeds concurrently. They are

incrementally integrated, installed, and pu t into use.

Concurrent engineering can take place at the level of concurrent threads, or it may

take place a t a subsystem level (i.e., work for each subsystem may contain concurrent

threads) [62]. EPTES is an example of Type 0 concurrency, since different teams perform

different activities (i.e., heterogeneous prototyping) on elements of different risk-level.

f Team I

Concept development.
Requirements o f

Subsystem (

Team I

Architecture,
Design o f

Subsystem 1

Team i

Code, Unit test
o f Subsystem 1

Team 1

Integration,
Acceptance o f
Subsystem I

Type 0

Mcdium-risk elements
development spiral

Team 2 7ZL
Concept development.

Requirements
ofbsvstem 2

Team 2

High-risk elements
development spiral

Type 0

Architecture,
Design o f

Subsystem 2

Team 2 Team 2

Code. Unit test
o f Subsystem 2

Low-risk elements
development spiral

Team J

In tegration ,
Acceptance o f
Subsystem 2

Type 0

Concept development.
Requirements o f

Subsystem 3

Team 2

Architecture,
Design o f

Subsvstem 3

Team 2 7T- Team 2

Code, Unit test
o f Subsystem 3

Integration,
Acceptance o f
Subsystem 3

/

Figure 3.11. The IPTES approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43
3.4.7 Microsoft Daily Build Process

Another CSE approach to the development of commercial software products is

Microsoft's Daily Build (DB) process. The DB process begins with a "vision statement"

outlining the goals of a new product. An initial set of product features is identified and

priority-ordered based on their importance in supporting end-users' activities. The list

of prioritized features is then partitioned into three to five feature sets that small teams

can develop in a few months.

The DB process enables multiple feature teams to work in parallel. Each feature

team is responsible for a specific set of product features end-to-end from feature specifi­

cation, design and coding, to feature integration and testing. With the DB process, speci­

fications, development, and testing are carried out in parallel. However, the teams

synchronize their work by building the product and finding and fixing errors on a daily

and weekly basis. This is achieved by maintaining a shared master version of the imple­

mented product Developers have the freedom to evolve design and implementation of

their responsible features; however, they m ust check in their work at least twice a week.

As illustrated in figure 3.12, there are essentially two concurrency situations in the DB

practice, namely Type 1 and Type 2.

• Type 1: Each feature team usually consists of similar number of developers and

testers. The development and testing are done in parallel. Here, developers and

testers perform different activities on the same feature. Developers are responsible for

feature specification, design, and implementation. The testers prepare test plans and

design test cases based on the preliminary information about the specification and

design provided by the developers. The detected defects are fed back to the develop­

ers for revision and im provem ent The ongoing concurrent activities between devel­

opers and testers is an example of Type 1 concurrency (different people working on

different activities on the same work product).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44
• Type 2: This inter-RAW relationship occurs between developers of a feature team,

developers of different teams, and different feature teams. For example, the situation

where Developers 1 and 2 perform the same activity (i.e., design/im plem ent) on dif­

ferent work products (Features 1 and 2) a t the same time is an instance of Type 2 con­

currency. All three cases are possible, depending on how Features 1 and 2 are related

to each other.

D e s i g n / I m p l e m e n t / T e s t

T y p e 2

D e s i g n / l m p l e m e n t
F e a t u r e 2

T y p e 2 S p e c i f i c a t i o n &
D e s i g n

S o u r c e
C o d e D e l e c t e d

B u g s

JLLLm

T e s t
F e a t u r e 2

S o u r c e
C o d e D e t e c t e d

B u g s
D e s i g n

T y p e I

T e s t

Figure 3.12. The Microsoft daily build process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4
A SYSTEM DYNAMICS MODEL

4.1 Introduction

This chapter presents the proposed concurrent softw are engineering system

dynam ics sim ulation m odel CSE-SD. O ur purpose is to gain insight and understand­

ing abou t the im pact of CSE on software project developm ent w ith a focus on project

cost and developm ent cycle time. CSE-SD is draw n from extensive literature review

an d interview s w ith software project managers.

We will then use the sim ulation m odel as a research vehicle to investigate a set

of prelim inary questions. CSE-SD can answ er num erous softw are project m anage­

m en t questions, such as "Will an increased degree of concurrency shorten project

developm ent cycle time?" The results of other im portant questions are presented in

chapters 6 an d 7.

In the next section we w ill examine the benefits and problem s of each type of

concurrent softw are engineering and their dynamic implications. They are repre­

sen ted as a se t of cause-effect feedback relationships. These feedback relationships

serve as the foundation of CSE-SD. In section 4.3, w e present an overview of the

overall m odel structure and explain the m ain functions of each m odel component. A

detailed specification of the m odel, including formal m odel equations, is included in

appendices A and B.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46
4.2 Dynam ics o f Concurrent Software Engineering

In this section w e describe the underlying cause-effect feedback structures of

the CSE-SD m odel. The feedback structures aim to address the issues of the four

types of concurrency discussed in section 3.3.

4.2.1 Phase O verlapp ing

Phase overlapping in hardw are m anufacturing industry has show n a strong

correlation betw een the degree of phase overlapping and shorter developm ent life

cycle. This approach, however, is not well adopted in the software industry, since

software developm ent has a "soft" front end. Requirements changes of 25% or more

are not unusual [22]. Beginning the high-level design activities before the require­

m ents definition has stabilized increases the risk that changing specifications will

require redesign, and the cost of reworking a stage can be exorbitant [21].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

Across-phase
Communication

overhead
Downstream phase

start time
Average

productive
time

Degree of phase
overlapping

Stability of
upstream tasks

Downstream phase
completion time

Manpower
available for
development Average

work rate

QA effort

Project
completion timeDownstream

rework effort
Potential

downstream
task change

Downstream tasks
to be reworked

Upstream
defect age

Figure 4.1. Dynamics of phase overlapping.

Figure 4.1 show s the cause-effect dynamics of attem pting the phase overlapping

software developm ent approach. Phase overlapping happens w hen project develop­

m ent starts a dow nstream phase before the upstream phase is completed. A positive

effect is that, by starting earlier, the dow nstream phase can complete earlier. There­

fore, the project can be completed earlier. Another positive effect is that m ore work

can be done a t the same time, therefore, the overall average w ork rate is increased.

As a result, the project can be completed earlier. The two positive effects of starting

dow nstream phase early are depicted in the following two causal links (CLs):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48
Downstream phase sta rt time +> Downstream phase com pletion time +>

Project com pletion tim e (CL 6)

Downstream phase s ta rt tim e -> Degree of phase overlapping +> Average

w ork rate -> Project com pletion time (CL 7)

N ote that A +> B (A -> B) represents A and B change in the sam e (opposite) direc­

tion. For example, increasing A will incur an increase of B.

Instead of w aiting for the com pletion of the upstream phase, dow nstream engi­

neers need to use prelim inary inform ation from the upstream phase. This has a neg­

ative effect on project com pletion time, as show n in CL 8. Since the exchanged

inform ation is no t yet stable, any changes to the exchanged inform ation m ust be

incorporated in the dow nstream phase. The more unstable the inform ation being

used by dow nstream engineers, the m ore potential changes to dow nstream tasks can

be expected. The unexpected increase of the dow nstream rew ork tasks will consum e

p a rt of the person-day resource originally allocated to p lanned developm ent tasks,

w hich leads to the decrease in the overall average w ork rate. As a result, the project

com pletion time is prolonged.

Dow nstream phase s ta rt time +> Stability of upstream tasks -> Potential

dow nstream task change +> Dow nstream tasks to be rew orked +>

Downstream rew ork effort -> M anpow er available for developm ent +>

Average w ork rate -> Project com pletion time (CL 8)

The negative effect of using unstable information is exacerbated w hen dow n­

stream tasks are perform ed a t a faster pace (i.e., higher average w ork rate). This

leads to more dow nstream rew ork tasks to be generated. More rew ork tasks requires

m ore rew ork effort. Therefore, the m anpow er resource originally allocated to

p lanned developm ent tasks is reduced. The end result is tha t project com pletion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49
time being delayed even further. The negative effect of starting dow nstream phase

early is depicted in the follow ing causal link:

D ownstream phase sta rt tim e -> Degree of phase overlapping+> Average w ork

rate +> D ow nstream tasks to be reworked +> D ow nstream rew ork effort ->

M anpower available for developm ent +> Average w ork rate -> Project

com pletion time (CL 9)

Phase overlapping increases the need for engineers in different phases to com­

m unicate w ith each other. Two-way, high band-width inform ation flows are needed

to keep the process from getting "out-of-sync" and to com press the tim e betw een

occurrence and detection of problem s [21]. The negative effect of starting the dow n­

stream phase early is depicted in the following causal link:

Downstream phase sta rt tim e -> Degree of phase overlapping+> Across-phase

com m unication overhead -> Average productive tim e +> M anpow er available

for developm ent +> Average w ork rate -> Project com pletion tim e (CL 10)

Using defective inform ation from the upstream phase regenerates m ore dow n­

stream defects. The longer the defective information rem ains undetected, the more

the dow nstream defects w ill be amplified. Therefore, the tim e betw een occurrence

and detection of the defects in the exchanged inform ation (U pstream Defect Age)

has an im pact on the am ount of downstream tasks that need to be rew orked. Com­

m unication across tw o phases, a lthough helpful to detect problem s early, takes away

from the staff's productive tim e (Average Productive Time). A decreased average

productive time m eans tha t decreased manpower will be available for planned

developm ent tasks. As a result, the average work rate is decreased, w hich leads to

the project com pletion tim e being extended. QA activities have sim ilar effects. They

help to detect defects early, before they are regenerated and am plified. The effects of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50
effective across-phase com m unication and QA on project com pletion tim e are

depicted in the following three causal links:

Dow nstream phase start tim e -> Degree of phase overlapping+> Across-phase

com m unication overhead -> Upstream defect age +> Dow nstream tasks to be

rew orked +> D ow nstream rew ork effort -> M anpower available for

developm ent +> Average w ork rate -> Project completion time (CL 11)

QA effort -> Upstream defect age +> Downstream tasks to be rew orked +>

Downstream rew ork effort -> M anpower available for developm ent +>

Average w ork rate -> Project completion time (CL 12)

QA effort -> M anpow er available for developm ent +> Average w ork rate ->

Project com pletion time (CL 13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51
4.2.2 Synchronous Concurrent Subsystem s

I n te r te a m
c o m m u n ic a t io n

o v e rh e a d

N u m b e r o f
te a m sA v e ra g e

p r o d u c t iv e
tim e

D e g re e o f
c o n c u r re n c y

I n te a m
Q A e f f o r t

M a n p o w e r
a v a i la b le fo r
d e v e lo p m e n t

A v e ra g e
w o rk ra te

P ro jec t
c o m p le t io n tim e

In te r f a c e
p ro b le m s

a g e In te r f a c e
p ro b le m

r e s o lu t io n
e f fo r t

N u m b e r o f
in te r f a c e
p ro b le m s

In te g r a t io n
e f fo r t In te r f a c e

c o m p le x i ty

I n te g ra tio n
t a s k s N u m b e r o f

c o m p o n e n ts

Figure 4.2. Dynamics of synchronous concurrent subsystems.

Synchronous concurrent subsystems (SCS) is a com m on practice in the soft­

ware developm ent industry. However, it normally is practiced in the detailed design

stage, where m odules w ith well-defined interfaces (ideal situation) are assigned to

different program m ers for concurrent implementation. Recently, software develop­

m ent companies have been seeking ways to practice concurrent subsystem s devel­

opm ent in the early stages of the developm ent life cycle, such as requirem ents

analysis and high-level design ([14], [34], [44]). The benefits and potential risks of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52
synchronous concurrent subsystem s developm ent approach are exam ined in this

section.

Figure 4.2 show s the dynamics of the synchronous concurrent subsystems

developm ent approach. Two key m ilestones in a SCS-based project are problem

decom position and synchronization/ integration.

Large-scale software systems m ust be decom posed into com ponents, so they

can be assigned to m ultiple teams a n d /o r individuals for concurrent development.

The total num ber of com ponents, their contents, and sizes are im portan t issues. If a

system is decom posed into more com ponents, they then can be assigned to more

developm ent teams. More concurrent developm ent team s m eans m ore tasks are

being done a t the sam e tim e (increased degree of concurrency). The overall average

w ork rate is increased, and as a result, the project com pletion tim e is reduced. The

effects of increasing the num ber of concurrent team s are depicted as the following

causal link:

N um ber of teams +> Degree of concurrency +> Average w ork rate -> Project

com pletion time (CL 14)

There is, however, a negative effect, as well, w hen the num ber of concurrent

team s is increased, as depicted in CL 15. As the num ber of teams increases, m ore

inter-team com m unication traffic is expected, especially w hen the system is not well

partitioned (i.e., high-interface complexity). Therefore, staff m em bers' average pro­

ductive time is decreased, which leads to the decrease of available m anpow er

resource for planned developm ent tasks. The end result is that project completion

tim e is delayed even further.

N um ber of teams +> Interteam com m unication overhead -> Average

productive time +> M anpower available for developm ent +> Average w ork

rate -> Project com pletion time (CL 15)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53
As the num ber of com ponents increases, the interfaces am ong com ponents

become m ore complicated. H igher interface complexity has tw o negative effects on

project schedule, as depicted in CL 16. First, a complex interface incurs m ore com­

m unication overhead am ong developm ent teams. As project staff m em bers spend

m ore tim e com m unicating w ith other teams, the time they can spend on develop­

m ent w ork is decreased. Decreased productive time m eans decreased m anpow er is

available for planned developm ent tasks. As a result, the overall average w ork rate

is decreased, and the project com pletion time is extended.

Interface complexity +> Interteam communication overhead -> Average

productive time +> M anpow er available for developm ent +> Average w ork

rate -> Project com pletion time (CL 16)

The second effect of a complex interface is that interface problem s are more

likely to happen, and as the num ber of components increases, the effect becomes

m ore serious. Interface problem s have to be resolved sooner or later. M ore interface

problem s m ean more interface problem resolution effort is needed. As m anpow er is

allocated to resolve interface problems, the available m anpow er available for

p lanned developm ent tasks is decreased. The overall average w ork rate also

decreases. As a result, the time to project completion is extended. The effects of a

complex interface are depicted in the following two causal links:

N um ber of com ponents +> Interface complexity +> N um ber of interface

problem s +> Interface problem resolution effort -> M anpower available for

developm ent +> Average w ork rate -> Project completion tim e (CL 17)

N um ber of com ponents +> Num ber of interface problems +> Interface

problem resolution effort -> M anpower available for developm ent +> Average

w ork rate -> Project com pletion time (CL 18)

A nother negative effect of increasing the num ber of com ponents is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54
increased num ber of integration tasks. More components m ean m ore tasks have to

be integrated. System integration takes away part of the m anpow er allocated to

p lanned developm ent tasks. As a result, the overall average w ork rate is decreased,

and the project com pletion time is extended, as illustrated in CL 19.

N um ber of com ponents +> Integration tasks +> Integration effort ->

M anpow er available for development +> Average w ork rate -> Project

com pletion time (CL 19)

Concurrent developm ent w ithout synchronization and coordination among

concurrent developm ent teams throughout the project life cycle can result in inter­

face problem s that surface a t the end, w hen the com ponents are integrated. For

example, in firm ware development, delaying the integration of hardw are and soft­

ware until the first testable hardw are prototype is troublesome for several reasons.

Engineers have little time to correct design problems, and fixes are more costly than

they are earlier in the design process. Options for revisions are m uch more limited;

because of the rigidity of the hardware, design changes usually are m ade in the soft­

ware, at the expense of system performance [21].

Effective com m unication between engineers of tw o different teams and the

quality of the exchanged information both help to shorten the time between the

introduction and the detection of an interface problem (i.e, interface problem age). If

an interface problem is not detected close to the time it is introduced, then more

interface problem s will be regenerated as it flows into dow nstream phases. The later

an interface problem is detected, the more interface problem s will be amplified,

which, in tu rn dem ands more interface problem-resolution effort. As a result, the

planned developm ent tasks are delayed, and the overall average work rate is

reduced, w hich leads to an extended project completion time, as depicted in CL 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55
Interteam com m unication -> Interface problem age +> N um ber of interface

problems +> Interface problem resolution effort -> M anpow er available for

developm ent +> Average w ork rate -> Project com pletion tim e (CL 20)

Besides frequent com m unication am ong concurrent team s, periodic interteam

QA activities (e.g., specification and design reviews) help to locate interface prob­

lems early, before they are am plified w hen they flow into subsequent phases. Inter­

team QA, although helpful to reducing the interface problem age, nonetheless takes

aw ay staff m em bers' productive time. The reduced average productive tim e means

less m anpow er will be available for planned developm ent tasks. Therefore, the over­

all average w ork rate is reduced. As a result, the project com pletion tim e is extended.

Interteam com m unication -> Interface problem age +> N um ber of interface

problem s +> Interface problem resolution effort -> M anpow er available for

developm ent +> Average w ork rate -> Project com pletion time (CL 21)

4.2.3 A synchronous C oncurrent Subsystem s

The Asynchronous Concurrent Subsystems (ACS) concurrency is congruent

w ith the Synchronous Concurrent Subsystems (SCS) concurrency. In SCS, different

teams perform the sam e activity on different w ork products. The developm ent pro­

cess is "synchronized," since different subteams perform the sam e activity (e.g.,

design) a t the same time. However, w hen two subteam s progress a t a different pace,

the SCS concurrency transform s into the ACS concurrency. ACS is an exam ple of

"Type 0 (000)" concurrency because different teams (R = 0) perform "different" activ­

ities (A = 0) on different w ork products (W = 0) at the sam e time.

A lthough the developm ent is not synchronous (i.e., each subteam evolves its

design a t different speed), the subteam s' work m ust be in tegrated a t the end of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56
project. Therefore, it is im portant to know how to control the developm ent progress

of each team, to be sure they will complete their share of work on time.

In te r te a m
c o m m u n ic a tio n

N um ber o f
te a m sA v e rag e

p ro d u c tiv e
tim e

D e g ree of
c o n c u rre n c y

W o rk ra te
d iffe re n c e

In team
Q A e ffo r t

M a n p o w e r
a v a ila b le fo r
d e v e lo p m e n t

A v e rag e
w o rk ra te In te g ra tio n

d e la y

Project _
com pletion tim e +In te rface

p ro b le m s
age In te rface

p ro b lem
re so lu tio n

e ffo rt

N u m b e r o f
in te rfac e
p ro b le m s

In te g ra tio n
e ffo r t In te rfa ce

co m p lex ity

In teg ra tion
ta sk s N u m b e r o f

c o m p o n e n ts

Figure 4.3. Dynamics of asynchronous concurrent subsystem s.

Increasing the num ber of developm ent team s will increase the degree of con­

currency, bu t it also increases the probability that the work rate of each team will be

deviated from each other. Faster teams have to w ait for slower team s to com plete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57
before their w ork can be integrated. The delay of integration prolongs the project

com pletion time, as the following causal link shows:

N um ber of teams +> Work rate difference +> Integration delay +> Project

com pletion time (CL 22)

4.2.4 Cross Function Integration

Concurrent engineering (CE), as practiced in the hardw are m anufacturing

industry, is an instance of Cross Function Integration (CFI) concurrency. CE inte­

grates expertise in m ultiple functions by form ing a cross-functional team that

involve engineers from different functional areas: hardw are and software engineer­

ing, m arketing, process engineering, business developm ent, custom er engineering,

and m anufacturing. Each m ember is involved in every stage of the product cycle

[67]. In a cross-functional team, engineers from different functional disciplines per­

form the sam e activity on the same w ork product at the sam e time. Therefore, CFI is

an exam ple of "Type 3 (Oil)" concurrency. The cause-effect relationships of the Cross

Function Integration (CFI) are show n in figure 4.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

T eam size

D efects age

Team
cross-functionalitv

- I
D ecision-m aking

d e la y

In terteam
co m m unica tion

ov erh ead

\+
In tra team

co m m u n ica tio n
o v e rh ead

j—
A v e r a g e

p r o d u c t i v e t im e

C o-location

T eam
em p o w erm en t

C o m m u n ica tio n
delay

M o tiv a t io n

A v e r a g e
s t a f f p r o d u c t i v i t y

Schedule
pressu re

\+
M an p o w er av ailab le

for d ev e lo p m en t

A v erage
w o rk ra te

Tim e as a goal

Figure 4.4. Dynamics of cross function integration.

In CE, the key ingredient is team w ork [67]. Product developm ent tim e is

reduced through m any teamwork-related mechanisms, including (1) cross-func­

tional teaming; (2) empowerm ent of decision-making authority; (3) co-location of

core team members; and (4) setting time as a goal [85].

Cross-functional development teams, form ed a t the start of a project, facilitate

the com m unication of product requirements and constraints am ong the functional

groups. This enables early problem identification, better cross-functional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59
coordination and faster decision-making [85]. Teams com posed of m em bers from

different technical areas have been show n to be better a t exploring design decisions

in b read th by posing alternatives and constraints and by challenging assum ptions

[33]. Being able to quickly make high-quality decisions is a critical factor in fast

p roduct developm ent. Decision-making is m ade easier w ith a cross-functional team,

because the prim ary information providers and decision-makers are part of the team

[85]. The effects of forming multi-disciplinary teams are depicted in the follow ing

four causal links:

Team cross-functionality -> Interteam com m unication overhead +> Average

productive time +> M anpower available for developm ent +> Average w ork

rate -> Project completion time (CL 23)

Team cross-functionality -> Decision-making delay -> Average w ork rate ->

Project com pletion time (CL 24)

Team cross-functionality -> Defect age +> N um ber of tasks to be rew orked +>

Rework effort -> M anpower available for developm ent +> Average w ork rate -

> Project com pletion time (CL 25)

Team cross-functionality +> Team size +> Intrateam com m unication overhead

-> Average productive time +> M anpow er available for developm ent +>

Average w ork rate -> Project com pletion time (CL 26)

Personnel factors have the greatest potential to shorten software project sched­

ule across a variety of projects [57]. M otivation is undoubtedly the single greatest

influence on how well people perform. M ost productivity studies have found tha t

m otivation has a stronger influence on productivity than any other contributing fac­

tor [22]. The sense of em pow erm ent has a m otivating effect on staff mem bers.

Em pow erm ent, or dow nw ard delegation of decision-making power, has m oti­

vational impacts. Instead of waiting for senior m anagem ent's approval, project team

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60
m em bers are em pow ered to m ake and im plem ent their ow n decisions. Em pow er­

m ent results in an increased m otivation to do things better and faster. The more

autonom y people have, the greater the sense of personal responsibility they tend to

feel for the outcom e of their w ork [57]. They ow n the schedule, bu t they feel the pres­

sure of the m arket. This pressure causes them to reach for tools on their ow n [24],

Em pow erm ent m otivates engineers to work harder, especially under schedule pres­

sure. The effects of em pow erm ent are depicted as the following three causal links:

Team em pow erm ent -> Decision-making delay -> Average w ork rate -> Project

com pletion tim e (CL 27)

Team em pow erm ent +> M otivation +> Average staff productivity +> Average

w ork rate -> Project completion time (CL 28)

Team em pow erm ent +> Schedule pressure +> Average w ork rate -> Project

com pletion tim e (CL 29)

Locating project team m embers close together can speed up developm ent by

facilitating com m unication and decision-making [85]. It is costly to collect an d dis­

sem inate inform ation am ong distributed developm ent teams. Dividing the process

into m ultiple team s m ay block the sm ooth flow of inform ation and developm ent

know ledge [19]. The effects of co-location are depicted as the following three causal

links:

Co-location -> Com m unication delay -> Average w ork rate -> Project

completion tim e (CL 30)

Co-location -> Decision-making delay -> Average w ork rate -> Project

completion tim e (CL 31)

Goal setting is another key to achievement m otivation. Setting time as a goal

speeds up the developm ent process [85]. The experience of consum er products

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61
illustrates th a t competitive benchmarking and focusing on reducing the time needed

to realize new products can drive significant process improvem ent.

Setting too aggressive a goal, however, has negative effects on project perfor­

mance. As schedule pressures increase, commitment will increase to some point, and

then decline as m otivation declines due to overwork or disillusionm ent w ith the

project or the organization [59]. You should keep com m itm ent up by m aintaining a

slight-to-m odest schedule pressure using deadlines and setting goals that challenge

w ork groups w ithout exhausting them.

Time as a goal +> Schedule pressure +> (or ->) M otivation +> Average staff

productivity +> Average w ork rate -> Project com pletion time (CL 32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62
4.3 M odel Structure

As show n in table 4.1, the proposed concurrent software engineering system

dynam ics (CSE-SD) m odel consists of five subsystem s, namely, Work Flow, Dejects

and Rezoork, Human Resource, Manpower Allocation, and Manpower Needed, and four

other independent sectors, Planning, Project Control, Interteam Interactions, and Project

Scope Change. CSE-SD is im plem ented in ithink analyst [43] software package. An

overview of the m odel is show n in figure 4.5. The m ain functions of each m odel

com ponent and their relationships are described below.

Table 4.1. Major com ponents of the CSE-SD model

SUBSYSTEM SECTOR

HUMAN RESOURCE
Work Force
Staff Productive Time
Staff Productivity

WORKFLOW
Requirements Work Flow
Development Work Flow
System Integration and Test (SIT)

DEFECTS AND REWORK Requirements Defects and Rework
Development Defects and Rework

MANPOWER ALLOCATION
Requirements Manpower Allocation
Development Manpower Allocation
SIT Manpower Allocation

MANPOWER NEEDED
Requirements Manpower Needed
Development Manpower Needed
SIT Manpower Needed

INDEPENDENT SECTORS
Planning
Project Control
Interteam Interactions
Project Scope Change

The Human Resource subsystem consists of three sectors: Work Force, Staff Pro­

ductive Time, and Staff Productivity. The Work Force sector keeps track of the num ber

of software engineers currently w orking on the project. We divide w ork force into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63
tw o categories, namely, new staff and experienced staff, for three reasons. First, new

staff m em bers usually are less productive due to their lack of project experience and

know ledge. Second, new staff m em bers usually spend m ost of their tim e in training

and orientation right after they are brought into the project. Training also consum es

part of the experienced staff m em bers' productive time. The third reason is tha t new

staff m em bers usually are prone to com m it m ore errors than experienced staff m em ­

bers.

The Staff Productive Time sector m onitors the staff time resource. It breaks dow n

the project staff's daily time into tw o m ain categories: project time and slack time.

Project tim e is the time that staff m em bers spend on project-related activities, includ­

ing developm ent, training, and project-related communication. It is further d ivided

into three different categories: productive tim e, training time, and com m unication

time. Productive time includes the time that staff members spend directly on devel­

opm ent activities, such as requirem ents specification, design, coding, testing, QA,

and rew ork. Training tim e keeps track of the tim e that project staff spends in training

per day, including the time spent both by experienced staff mem bers and new staff

m em bers in training-related activities.

Com m unication time captures the am ount of time that project staff spends in

com m unicating w ith other m em bers w ithin a team and across teams. A w ell-parti­

tioned project usually has higher com m unication traffic w ithin a team than across

teams. Slack time captures the time tha t project staff spends in non-project-related

events, such as coffee breaks, sickness, and so forth. Project staff overtim e also is

m onitored.

The Staff Productivity sector determ ines the average production rate of project

staff m em bers (i.e., num ber of tasks perform ed per staff per un it time). A lthough

num erous factors could affect staff m em bers' production rate, we focus on four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64
factors that have dynamic implications, namely, work force mix, learning effect,

schedule pressure, and staff exhaustion level. The average staff production rate a t

any po in t in tim e is determ ined by m ultiplying the "nom inal staff production rate"

(defined as the production rate of the experienced staff w orking under norm al con­

dition, that is, there is no schedule pressure and they are n o t exhausted) by the four

factors. Schedule pressure, learning effect, and work force mix (more experienced

staff m em bers equate to a larger production rate) have a positive im pact on staff pro­

duction rate, while staff exhaustion level has negative effects.

The Work Flow subsystem m odels the software production activities, ranging

from requirem ents specification, software design, coding, to system integration and

test. It consists of three sectors, and each sector models the software production pro­

cess of the three phases m odeled in CSE-SD, namely, requirem ents, developm ent

(including design and coding), and system integration and test.

The Defects and Rezvork subsystem models the generation, detection, and

rew ork of detected defects. Three categories of defects are of concern: requirem ents

specification defects, developm ent defects, and bad fixes. One im portant reason to

classify defects into these three categories is that different types of defects require

different costs to fix. Defects originated in upstream phases, such as requirem ents,

will flow into downstream phases if not detected. For example, a design based on

inconsistent requirements specification is defective, no m atter how perfect the

design is.

The Manpozoer Allocation subsystem allocates the planned project effort to dif­

ferent software engineering activities, including requirem ents specification, devel­

opm ent, QA, defect correction, and system integration and test.

The Manpozoer Needed subsystem determines, a t any stage of the developm ent

life cycle, the effort perceived still needed to complete the project, including effort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65
needed for requirements specification, specification QA, specification defect

correction (determ ined in the Requirements Manpower Needed sector), developm ent,

developm ent QA, developm ent defect correction (determ ined in the Development

Manpower Needed sector), system integration, system test, and defects found in the

system test phase (determined in the SIT Manpower Needed sector).

The am ount of effort perceived still needed to complete the project is deter­

m ined based on how well project staff perform ed in the past. In the early stage of the

developm ent life cycle, project staff m em bers usually do not know exactly how pro­

ductive they are. The perception of their productivity sim ply is their planned pro­

ductivity. However, w hen the project progresses to the end, they begin to realize

how productive they are. Therefore, their perception of their productivity

approaches their actual productivity. The total effort perceived still needed to com­

plete the project is fed into the Project Control sector to decide w hether or not to

ad just project effort, schedule, w ork force, or all three, if needed.

The Planning sector is the entry point to the CSE-SD m odel. Its m ain functions

are to com pute and distribute the estim ated project effort to different phases of the

software developm ent life cycle. Prior to initiating a software developm ent project,

m anagers m ust estimate three things before the project begins: how long it will take,

how m uch effort will be required, and how m any people will be involved [61]. Accu­

rate estim ation of the project effort, schedule, and required w ork force, however,

relies on an accurate estimate of the product size. To run the m odel, the sim ulator

m ust provide a value for the initial estim ate of the project size. CSE-SD calculates

project effort, schedule, and expected w ork force based on the COCOMO cost esti­

m ation m odel [22-23].

The Project Scope Change sector models the change in the scope of a software

project. Reasons that cause the project scope to change include incomplete and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66
conflicting requirem ents specifications, requirem ents uncovered due to project

underestim ation, and new requirements. U nplanned requirem ents, w hen discov­

ered an d incorporated into the project plan, will cause p a rt of the existing develop­

m ent tasks to be deleted or modified, and new tasks will be added.

The Interteam Interactions sector deals w ith the interteam issues tha t resu lt from

m ultiple concurrent activities. It m odels the generation, detection, and resolution of

problem s and issues caused by m ultiple concurrent teams that could be avoided if

done by a single team. For example, m ultiple team s w orking on related subsystem s

m ay d isrup t the system integrity. In requirem ents specifications, for exam ple, this

can cause inconsistent or incom plete specifications. In design and im plem entation,

sim ultaneous updates to a single m odule m ay violate that m odule's consistency [14].

Undetected interteam problem s tend to propagate through succeeding tasks

that build on one another, such as through design and coding tasks built on inconsis­

tent requirem ent specifications. Resolution of detected interteam problem s leads to

the rew ork of som e of tasks.

The Project Control sector m onitors and controls a software developm ent

project. It combines the effort perceived still needed to complete the project from the

three Manpower Needed sectors and compares it w ith the planned developm ent effort

that is rem aining. Corrective actions are taken w hen these two m easures deviate sig­

nificantly from each other. Corrective actions that usually are taken by softw are

project m anagers are m odeled in CSE-SD, including m odifying the planned project

effort and schedule, changing the planned w ork force, adjusting the p lanned QA

and testing effort, or a com bination of the three.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

Specification change/
Developm ent change

SEC TO R

M anpower
allocated to

EnterteaxnQA IN TER T EA M
IN T E R A C T IO N S Specification ra te /

Development rate

PRO JECT
SC O PE

C H A N G E

Fraction of w ork complete
(specification and development)

Requirem ents change

M anpower allocated to specification,
developm ent, QA, defect correction, and

system in tegration and test

SUBSY STEM
(m u l tip le sec to rs)

Planned project
dura tion and effort

PLA N N IN G

Initial # o f new
and experienced staff

W ORK
FLOW

M AN POW ER
A LLO C A TIO N

Initial # of
requirements

H U M A N
R ESO U RCE

Staff productivity

Specification ra te /
Development ra te /
QA rate

M anpow er allocated
to defect correction

DEFECTS
A N D

REW ORK

C urrent w ork force/Staff productive time

Desired
workforce

change

PRO JECT
C O N T R O L

Perceived effort
needed to com plete
the project

MA N P O W ER
N EED ED

Schedule pressure

Figure 4.5. Overview of the CSE-SD model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68
4.4 C om parison w ith O ther Related SD M odels

In this section, we review four related software project system dynamics m od­

els, including Abdel-Ham id and M adnick [2-10], JPL [48-50], M adachy [52-53] and

Collofello and Tvedt [79-80], and compare CSE-SD w ith each one of them.

4.4.1 A bdel-H am id and M adnick

The Abdel-Hamid and Madnick (AHM) software project system dynamics

m odel represents one of the first efforts in this area. The AHM model covers im por­

tan t issues of software project management, presents num erous system dynamics

m odeling strategies, and includes quantitative data that motivate us to em ploy the

system dynam ics approach to study the im pact of concurrent software engineering.

We have learned from their experience and include part of their m odeling strategies

and used their data in CSE-SD, especially in the Staff Productivity and Development

Defects and Rework sectors. The major differences betw een CSE-SD and the AHM

m odel are sum m arized as follows:

First, CSE-SD addresses issues that are fundam entally different from those of

the AHM. The AHM m odel addresses software project m anagem ent issues in gen­

eral. The m odel provides a generic software developm ent system dynam ics model.

CSE-SD is developed to examine the im pact of concurrent software engineering on

project schedule and effort.

Second, unlike the AHM model, which does not cover the requirements analy­

sis phase, CSE-SD includes five sectors (i.e., Requirements Work Flow, Requirements

Defects and Rework, Requirements Manpower Allocation, Requirements Manpozver Needed,

and Project Scope Change) to model the requirem ents analysis phase and address the

issues that result from requirements change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69
Third, the m anpow er allocation policy is different. In AHM, m anpow er

resources are allocated to different project-related activities in the o rder of training,

QA, defect rework, then developm ent and testing. In CSE-SD, the rem ain ing daily

m anpow er after training and comm unication overhead is first d istributed to differ­

en t phases. CSE-SD includes three m anpow er allocation sectors (Requirements Man­

power Allocation, Development Manpower Allocation, and SIT Manpower Allocation);

each one is responsible for distributing m anpow er to different activities w ith in its

responsible phase. For example, the Development Manpower Allocation sector is

responsible for the developm ent (including design and coding) phase. A certain por­

tion of the developm ent m anpow er is reserved for QA. The rem aining m anpow er is

allocated to developm ent defect correction, followed by developm ent activities.

Fourth, CSE-SD breaks dow n project staff m em bers' daily tim e into different

categories and monitors their changes over time, including project-related time,

slack time, training time, intrateam comm unication time, and interteam com m unica­

tion time. In AHM, training and com m unication are m odeled as a single param eter.

Finally, unlike the AHM m odel, which is a single-team m odel, CSE-SD

includes the Interteam Interactions sector to m odel the generation, detection, and res­

olution of problem s and issues caused by m ultiple concurrent team s th a t could be

avoided if done by a single team.

4.4.2 JPL

The Software Engineering and M anagem ent Process Sim ulation (SEPS) m odel,

developed a t the Jet Propulsion Laboratory (JPL), is designed to be a p lanning tool to

exam ine the trade-offs of cost, schedule, and functionality, and to test the implica­

tions of different m anagem ent policies on a project's outcome. The purpose and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70
m odel structure of SEPS are sim ilar to those of the AHM m odel, except that SEPS

covers the requirem ents analysis phase, w hich is no t addressed in the AHM m odel.

The SEPS m odel consists of four subsystem s: production, staff/effort, schedul­

ing, an d budge t [50]. The production subsystem m odels the developm ent progress

of a softw are project. The staff/effort subsystem m odels the functions which deter­

m ine the required w ork force (similar to AHM 's hum an-resource m anagem ent sub­

system). The scheduling subsystem models the functions that determ ine the time to

com plete a task and forecasts a com pletion tim e for each software life-cycle phase.

The budge t subsystem keeps track of the cum ulative m anpow er expenditures in

relation to available budget.

Like the AH M model, the SEPS m odel addresses issues that are fundam entally

different from those of CSE-SD. The SEPS m odel addresses software project m anage­

m ent issues in general. The m odel provides a generic software developm ent system

dynam ics m odel. CSE-SD has been developed to examine the im pact of concurrent

software engineering on project schedule and effort.

4.4.3 M adachy

M adachy used the system dynamics approach to study the im pact of software

inspection on project schedule, effort, and quality [52-53]. The purpose of the

M adachy m odel is fundam entally different from ours. We are interested in assessing

the im pact of concurrent software engineering on project cost and cycle time.

Because the purpose of the m odel is different, the scope and the form ulation of the

m odel therefore are different.

Like the AHM model, the M adachy m odel covers the design through the sys­

tem testing phases. However, in the M adachy m odel, developm ent activities are

decom posed into design and coding activities. The m ain purpose of m odeling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71
design and coding activities independently is to capture the dynam ics of defect

am plification through successive phases from design through system testing, and to

h ighlight the importance of software inspection in lessening the impacts. Unlike the

M adachy m odel, the CSE-SD m odel covers the entire software developm ent life

cycle, including requirements, developm ent, and system integration and testing.

To exam ine the im pact of CSE, especially the phase overlapping concurrency and

the synchronous concurrent subsystems concurrency, we include four sectors to m odel

the requirem ents phase (i.e., Requirements Work Floxv, Requirements Defects and

Rework, Requirements Manpoxver Allocation, and Requirements Manpoxver Needed), one

sector (Project Scope Change) to capture the im pact of requirements changes, and one

sector (Interteam Interactions) to address the multiple-team concurrent developm ent

issues.

A nother difference between the M adachy m odel and the CSE-SD m odel, as

well as the AHM model, is the QA m anpow er allocation policy. In the M adachy

m odel, m anpow er resources are allocated to inspection and rew ork as needed, as

opposed to the Parkinson's m anpow er allocation policy employed in both the AHM

m odel and the CSE model, where QA is assum ed to complete w ithin a certain

period, no m atter how many tasks are in the queue.

Like the CSE-SD model, the M adachy m odel assumes that defects are detected

only via QA (i.e., inspection) and system testing activities. Project staff m em bers are

assum ed to be experienced in QA. Unlike CSE-SD, the Madachy m odel does not

consider the effect of project underestim ation.

4.4.4 Collofello and Tvedt

Collofello and Tvedt developed a concurrent incremental software develop­

m ent (CISD) system dynamics m odel in their effort to propose an extensible system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72
dynam ics m odeling approach [80]. The CISD model consists of tw o groups of m odel

components: single-increment components and inter-increment com ponents. The

single-increm ent components group models the developm ent of an increment. It

covers the entire software developm ent life cycle, from requirem ents analysis to sys­

tem test. The issues and modeling approaches, however, are very sim ilar to those of

the AHM model.

The inter-increment com ponent group deserves m ore attention. It consists of

four sectors that deal w ith inter-increment issues deserve more discussion, namely,

Synchronize Increment Start, Increment Overhead Due to Dependence, Increment Overhead

Due to Overlap, and Inter-Increment Defect Regeneration.

The Synchronize Increment Start sector determines w hen the developm ent of an

increm ent m ay start. It is determ ined by the percentage of developm ent and testing

com pleted for every other increment on which this increment depends.

The Increment Overhead Due to Overlap sector determines the am ount of over­

head w ork of an increment caused by overlapping the developm ent of an increm ent

w ith all other increments on which it depends. The overhead is decom posed into

perceived developm ent overhead, perceived test overhead, underestim ated devel­

opm ent overhead, and underestim ated test overhead. Each category of overhead is

m odeled as a single parameter. For example, the perceived developm ent overhead

incurred by an increment, say Y, due to concurrent developm ent w ith its dependent

increment, say X, is m odeled as init pcvd inc X dev ov oh Y.

The Increment Overhead Due to Dependence sector determines the am ount of

overhead w ork of an increment due to its dependence on other increments. Like the

Increment Overhead Due to Dependence sector, the dependence overhead is decom ­

posed into four categories: perceived development overhead, perceived test over­

head, underestim ated developm ent overhead, and underestim ated test overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73
For example, the perceived developm ent overhead incurred by an increm ent, say Y,

due to its dependence on another increment, say X, is captured in the init pcud inc X

dev oh Y. The overhead due to dependence includes modifications, redocum entation,

review, and rework of w ork produced in other increments.

The Inter-Increment Defect Regeneration sector determ ines the defect regenera­

tion of an increment, caused by defect leakage from other increm ents on w hich this

increm ent depends. The percentage of defects from a prior increm ent tha t will be

leaked into this increment is determ ined based on this increm ent's relative depen­

dence on other increments. The defects leaked into an increment m ay be detected by

evaluation activities or, by system test, or m ay leak through system test into the

increm ent's dependent increments.

There are three major differences betw een CISD and the p roposed CSE-SD

m odel. First, CISD is an incremental software developm ent m odel. It focuses on

issues that resulted from overlapping incremental developm ent, such as defect

regeneration and overhead incurred by an increm ent due to reusing any one of its

dependen t increment's w ork products.

Second, the m odeling approach is different. In their model, each increm ent is

m odeled as an instance of single-increm ent m odel. The m odel structure tha t deals

w ith inter-increm ent issues needs to be updated every time the num ber of incre­

m ents is changed. This m odeling approach is no t flexible if we w an t to exam ine dif­

ferent num bers of increments or if the num ber of increments is large.

Third, the overhead incurred by an increm ent due to reusing any one of its

dependen t increment's w ork products, m odeled as a single generic param eter, is too

simplistic. The im pact on the client increments due to changes to the reused w ork by

the server increm ent is not m odeled. The overhead incurred by an increm ent due to

overlapping activities has the sam e problem. We include an "Interteam Interactions"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74
sector to address the interteam issues that resulted from m ultiple concurrent activi­

ties. This sector m odels the generation, detection, and resolution of problem s and

issues caused by m ultiple concurrent teams that could be avoided if done by a single

team.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTERS

MODEL TESTING

5.1 Introduction

Before we use the CSE-SD model to assess the im pact of concurrent software

engineering on project cost and developm ent cycle time, the m odel has to be tested

extensively. O ur testing of the CSE-SD model consists of tw o m ain steps: unit-level

testing and system-level m odel behavior testing.

The purpose of the unit-level testing is to examine the behavior of each individ­

ual m odel parameter, to m ake sure each one of them is soundly m odeled. In other

w ords, we w ant to m ake sure they behave as we expect and they do not produce any

anom alous model behaviors. By focusing on each individual param eter and observ­

ing their behaviors, w e can easily judge the correctness and soundness of the m odel­

ing.

CSE-SD is a comprehensive and complicated m odel which consists of more

than 400 m odel param eters. Therefore, it is impractical to test each one of them indi­

vidually. Instead, w e focus on model parameters that are believed to have significant

effects on model behaviors and leave the testing of other param eters to the system-

level testing. We perform system-level testing to observe the behavior of the entire

m odel and compare our testing results w ith those of Abdel-H am id and M adnick [7]

to improve our confidence level of the correctness and soundness of the proposed

CSE-SD model. Section 5.2 reports the results of unit-level testing. The results of sys­

tem-level testing are presented in section 5.3.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76
5.2 U nit Testing

In this section, w e conduct a se t of sim ulation runs to examine the behavior of

each individual m odel param eter to m ake sure each one of them is soundly m od­

eled. We w ant to m ake sure they behave as w e expect and do not produce any anom ­

alous m odel behaviors. By focusing on individual param eters and observing their

behaviors, we can easily judge the correctness and soundness of the m odeling. We

conduct ten test runs to test individual m odel param eters and sectors. They are

described below.

Test Rim #1: Perfect Project

Purpose: To test the Development Work Flow sector, and the System Integration and Test

sector. The behaviors of three m odel param eters are observed: Cum Units Deved

(cumulative units developed), Cum Units Integrated (cumulative units integrated)

Cum Units Tested (cumulative units tested).

Assumptions:

1. Planned effort equals the actual effort expenditure.

2. N o defects are involved.

3. Initial staffing factor is set to 1. That is, 100% of the project's expected staffing is

initially allocated.

4. Project staffs spend approxim ately 50% of their daily time on project-related pro­

duction activities throughout the entire developm ent life cycle.

Project scenario:

1. The project w as accurately estim ated to be 64 KLOC large in size (1067 develop­

m ent units).

2. According to the basic organic-mode COCOMO model, 2695 person-days were

allocated to the developm ent phase. The planned developm ent production rate,

therefore, is 1067/2695 = 0.396 developm ent units per person-day. The average

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77
staff level is 10. Therefore, 3.96 (0.396 u n its / person-day x 10 person-days/day)

developm ent units are com pleted each day.

3. The entire developm ent phase took 1067/3.96 = 270 w orking days to com plete.

As show n in figure 5.1, this is consistent w ith the result generated from CSE-SD.

4. System integration and test began right after the developm ent phase w as com ­

pleted. As planned (according to COCOMO model), it took 90 w orking days to

com plete. To finish system integration and test on time, 0.3 person-days, on aver­

age, is needed to integrate and test a developm ent unit. The project took, as esti­

m ated, approxim ately 360 w orking days to complete.

Conclusions: U nder the above assum ptions, the m odel perform s as expected.

^ 1: Cum Units Deved

•1

2: Cum Units Integrated 3: Cum Units Tested

2000.00

tooo.oo

0 .00 '

300.000.00 100.00 200.00 400.00 500.00

Test Run: p1 (Project Progress) Days 4:00 PM Fri. Oct 16.1998

Figure 5.1. Project progress of a perfect project, curve 1: cum ulative units
developed; curve 2: cum ulative units integrated; curve 3: cum ulative units
tested.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78
Test Run #2: Effort Underestimation

Purpose: To test the Project Control sector. The behaviors of two m odel param eters

are observed: Planned Project Effort and project effort gap reported.

Assum ptions:

1. No defects are involved.

2. Project staffs spend approxim ately 30% of their daily tim e on project-related pro­

duction activities th roughout the entire developm ent life cycle.

Project scenario:

There are num erous reasons that cause the m anpow er perceived still needed to

com plete the project to deviate from that rem aining in the plan. M ost significant

am ong the reasons m odeled in CSE-SD are:

1. Overestim ation of staff productivity: The actual staff productive time is low er

than w ha t is p lanned (i.e., work intensity level is low er than w hat is assum ed in

planning).

2. Discovery of unplanned requirem ents a n d /o r developm ent tasks.

3. Effort underestim ation: Planned effort is less than w hat is actually needed.

W hen the perceived m anpow er shortage exceeds a certain threshold, m anage­

m ent will adjust the original p lanned project effort. As show n in figure 5.2, a t a round

day 25, the "project effort gap reported" curve begins to rise. As a consequence, the

"Planned Project Effort" curve rises at around day 40. After day 130, the "project

effort gap reported" curve begins to drop, indicating a reduced gap betw een the

effort perceived still needed to complete the project and the rem aining planned

effort. Likewise, the adjustm ent of "Planned Project Effort" begins to taper off until

around day 240. It rises again due to an increased reported project effort gap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79
Conclusions: The Project Control sector adjusts the planned project effort according to

the reported gap betw een the p lanned rem aining project effort and the perceived

effort that is still needed to complete the project.

^ 1: Planned PropctEffoft 2: project effort gap reported

4000.00
30.00

3000.001
15.00

- 1'

2000.00
0 .0 0 '

360.000.00 90.00 180.00 270.00 450.00

^ J © © / 4' Test Run: p6 (Project Control) Day* 11:54PM Mon. Apr 12.1999

Figure 5.2. Adjusting the planned project effort w hen there is a reported gap
betw een the perceived project effort needed to complete the project and the
rem aining project effort.

T est R im # 3: Defects Involved

Purpose: To test the Development Defects and Rework sector.

Assum ptions:

1. Planned effort equals the actual effort expenditure.

2. The defect densities range in value from 25 defects per KLOC to 12.5 defects per

KLOC, w ith an average value for the project of approxim ately 19 defects per

KLOC [4],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80
Project scenario:

In CSE-SD, three project factors affecting defect generation rate are m odeled.

They are defect density, w ork force mix, and schedule pressure. In this test run, we

exclude the im pact of all three factors. As illustrated in figure 5.3, w hen the three fac­

tors are no t considered, curve 1 (nominal dev defects per KLOC) an d curve 2 (dev defects

committed per KLOC) overlap. The impact of each of the three factors is individually

tested and are illustrated in figures 5.4,5.5, and 5.6, respectively.

& 1:nannaf dev defects per KLOC

A

A

2. dev defects oorrm&ed per KLOC

50.00'

30.00

10.00 '

0 00 125.00 375.00 500.00250.00

Test Run: p23 (Normal Defect Density) Days 1252 AM Tue. Apr 13.1999

Figure 5.3. Nom inal and actual developm ent defect rate.

Test R un # 3.1

Purpose: To test the im pact of defect density on developm ent defect generation.

Assumptions: The effects of w ork force mix and schedule pressure are no t included.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81
Project Scenario:

The rate a t w hich the developm ent defects are generated {dev defects committed

per KLOC) is determ ined by m ultiplying nominal dev defects per KLOC (nom inal

developm ent defects p e r KLOC) and dev def density effect on dev def gen (the develop­

m ent defect density effort on developm ent defect generation).

^ 1: nominal dev defects p e r KLOC

u

a

'N] 8

2. dev defects committed per KLOC 3: dev def density effect on dev def gen

30.00

1.09

20 .00 ,

1.04

10.00
1.00

0.00 100.00 300.00 400.00 500.00200.00

Test Rum p20 (The Impact of Defect Density) Days 1:19 AM Tue, Apr 13.1999

Figure 5.4. The im pact of defect density on developm ent defect generation,
curve 1: nom inal developm ent defects per KLOC; curve 2: developm ent defects
com m itted per KLOC; curve 3: developm ent defect density effect on
developm ent defect generation.

Test Run # 3.2

Purpose: To test the im pact of workforce mix on developm ent defect generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82
Assumptions:

1. The impacts of defect density and schedule pressure are no t included.

2. Initial staffing factor is set to 0.5. That is, only 50% of the project's expected staff­

ing is initially allocated.

Project Scenario:

1. The rate a t w hich the developm ent defects are generated is determ ined by m ulti­

plying developm ent rate and developm ent defects com m itted per KLOC. That is,

dev def gen rate = dev rate x dev dejects committed per KLOC.

2. As illustrated in figure 5.5, a t day 153, curve 5 (frac staff exp) begins to drop. This is

because m anagem ent begins to bring in new staff that causes the fraction of expe­

rienced staff to drop. As we can see, curve 3 (dev defects committed per KLOC) starts

to rise and deviate from curve 2 (nominal dev defects per KLOC).

3. After a certain period of training and w orking on the project, new staff m embers

gradually become experienced and more productive. Therefore, curve 5 (frac staff

exp) rises slow ly and reaches 1 a t day 388. Curve 2 (nominal dev defects per KLOC)

and 3 (dev defects committed per KLOC) also merge at day 388. This indicates that all

new staff m em bers are considered experienced after day 388. Therefore, the

im pact of workforce mix disappears, since all staff are experienced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

1: dev def gen rata 2: nominal dev defects p ... 3: dev defects committe... 4: dev rate 5: frac staff exp

1
4:5;

h
4:
5:

i
4:
5:

4.00'
30.00

3.00
1.20

2.00
20.00 ,

1.50
0.75

0.00

10.00
0.00
0.30'

0.00 100.00 500.00

Test Run: p21 (Impact of Work force Mixon De... Days 8:58 AM Mon. Oct 19.1996

Figure 5.5. The im pact of workforce mix on developm ent defects generation,
curve 1: developm ent defect generation rate; curve 2: nom inal developm ent
defects per KLOC; curve 3: development defects com m itted per KLOC; curve 4:
developm ent rate; and curve 5: fraction staff experienced.

Test R un # 3.3

Purpose: To test the im pact of schedule pressure on developm ent defect generation.

Assumptions:

1. The impacts of defect density and workforce mix ratio are n o t included.

2. Initial staffing factor is set to 0.5. That is, only 50% of the project's expected staff­

ing is initially allocated.

Project scenario:

1. As show n in figure 5.6, a t around day 50, curve 3 (schedule pressure) begins to rise.

This is because the perceived manpower still needed to com plete the project is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84
less th an the p lanned m anpow er that is rem aining. As w e can see, curve 2 (dev

dejects committed per KLOC) starts to rise and deviate from curve 1 (nominal dev

dejects per KLOC).

2. M anagem ent brings in new staff a t around day 153.

3. After a certain period of training an d assimilation, new staff m em bers become

m ore productive. They gradually close the gap betw een the perceived m anpow er

still needed to com plete the project and the rem aining p lanned m anpower. As a

result, the schedule pressure is slowly reduced until around day 230.

4. W hen the schedule pressure is reduced, the gap betw een nominal dev dejects per

KLOC and dev defects committed per KLOC is also reduced. However, after around

day 270, even the schedule pressure rises, and the gap betw een nominal dev defects

per KLOC and dev defects committed per KLOC rem ains roughly the same. This is

because, after day 270, the project already has com pleted the developm ent phase,

and therefore, no developm ent defects are generated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

1:nomnal dev defects par KLOC

3
2: dev defects committed per KLOC 3: scte tU e pressure

jj
3:

3:

^ 8 ms*

50.001
S. 00

30.00,
3.00

10.00
0.00 '

0.00 200.00 500.00

Test Run: p24 (Impact of scfwduto pressure on ... Days 2:01AM Tue. Apr 13.1999

Figure 5.6. The im pact of schedule pressure on development defects generation,
curve 1: nom inal developm ent defects per KLOC; curve 2: developm ent defects
com m itted per KLOC; curve 3: schedule pressure.

Test R un # 4: Project Scope C hange

Purpose: To test the Project Scope Change sector.

Assum ptions:

1. Project staff m em bers spend 60% of their daily tim e on project-related activities

th roughou t the entire project life cycle. That is, the value of the daily productive

time param eter is set a t 0.6.

2. The project w ork force level remains unchanged. Therefore, the total daily m an­

pow er rem ains constant throughout the entire project life cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86
Project scenario:

1. U nplanned requirem ents are uncovered as the project progress. As show n in fig­

ure 5.7, m ost of the unplanned requirements (85%) are uncovered and incorpo­

rated prior to day 200. The m axim um num ber of unp lanned requirem ents

uncovered daily is around 0.75 (around day 100).

2. W hen the unplanned requirements are uncovered, they are incorporated into the

project plan. The perception of the project size (curve 2) is increased as a result of

the discovery of unplanned requirements.

Conclusions: The Project Scope Change sector incorporates requirem ents changes and

updates the perceived project size as expected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

1: Cum Raps Chang* 2: Pord Project S in 3:ro<pchangarats

200.0 0 '
80.00

0.60

100.00
60.00'
0.40

0.00
40.00

0 .00 '

0.00 100.00 200.00 300.00 400.00 500.00

Test Run: p16 (Project Scope Change) Days 10:46 AM Tim. Apr 13.1999

Figure 5.7. Project scope change, curve 1: cum ulative requirem ents change;
curve 2: perceived project size (KLOC); curve 3: requirements change rate.

T est R un # 5: Staff Productive T im e

Purpose: To test the Staff Productive Time sector.

Assumptions:

1. No developm ent defects.

2. N o requirements change.

3. Only 50% of the project's expected staffing is initially allocated (i.e., initial staffing

factor is set at 0.5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88
Project scenario:

1. As show n in figure 5.8, the average training time (curve 1) rises w h en new staff

m em bers (curve 2) are brought into the project As new staff m em bers are

tra ined and gradually assim ilated into the project, they become m ore experi­

enced. Therefore, the average train ing tim e gradually tapers off and approaches

0 a t the end of the project.

2. Figure 5.9 depicts the changes in staff m em bers' average slack tim e (i.e., the tim e

th a t staff m em bers spend on nonproject-related events each day) an d overtim e

th roughou t the developm ent project. The factor that drives the changes is the

schedule pressure. Schedule pressure occurs w hen the actual project progress

deviates from the planned project progress. A n increased schedule pressure then

causes staff m em bers to reduce their slack time and, if necessary, to w ork over­

time.

025,
5.00

0 0 0
0 .00 '

100.00 200.00 300.00

Test Rue p3 (Qafy Training Time) Days

Figure 5.8. Training time.

40040 500.00

1151 PM Tue.Apr13.1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

* 1: Sack Time

a

£ [S y Test Run: p9 (Overwork)

2. Overtime

0.50'

0 0 0 '

0.00 100.00 200.00

Days 11:44 AM Tue. Oct 20.1998

Figure 5.9. Slack tim e and overtime.

T est R u n # 6: Staff Productivity

The purpose of this test ru n is to test the Staff Productivity sector. Specifically,

w e w an t to observe how the average staff production rate changes th roughou t the

project. We consider three factors that affect staff m em bers' average production rate

in CSE-SD, namely, learning effect, staff exhaustion level, and schedule pressure.

Three test runs are perform ed to test each of the three factors.

T est R un #6.1

Purpose: To test the im pact of learning effect on staff productivity.

Assum ptions:

1. There are no developm ent defects.

2. N o requirem ents change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90
3. Only 50% of the project's expected staffing is initially allocated (i.e., initial staffing

factor is set a t 0.5).

Project scenario:

1. Figure 5.10 shows the effect of learning on staff production rate. Project staff

m em bers will increase their production rate as the project progresses, because

they learn while they w ork on the project.

2. Project staff members will increase their production rate from 60 LO C /person-

day in the beginning of the project to 75 L O C / person-day w hen the project is

com pleted. In other words, project staff m em bers will increase their productivity

by 25% through the developm ent of the project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

1. actual staff prod rale

a

i]

£ nominal staff prod rate 3: teaming effect on prod rate

200 .0 0 '

1.30

100.00 ,
1.15

0.00
1 .00 4

125.00 250.00 375.000.00 500.00

Test Run: pIS (Learning effect) Days 5:10 PM Frf. Oct 16.1996

Figure 5.10. Learning effect on staff production rate, curve 1: actual staff
production rate; curve 2: nom inal staff production rate; curve 3: learn ing effect
on staff production rate.

Test R un #6.2

Purpose: To test the im pact of staff exhaustion level on their productivity.

Assum ptions:

1. O nly 50% of the project's expected staffing is initially allocated (i.e., in itial staffing

factor is set at 0.5).

2. N o requirem ents change.

3. N om inal staff production rate (nominal staff prod rate) is assum ed to be a constant

(i.e., independent of the workforce mix).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92
Project scenarios:

As show n in figure 5.11, curve 3 (Exhaustion Level) begins to rise w hen project

staff m em bers increase their overw ork tim e (i.e., reduced slack time a n d / or w ork

overtime). W hen staff's exhaustion level increases, their production rate w ill be neg­

atively affected. Curve 1 (actual staff prod rate) drops below curve 2 (nominal staff prod

rate) w hen staff m em bers' average exhaustion level rises. W hen their exhaustion

level reaches a m axim um tolerable threshold, their production rate drops to a m ini­

m um , and they are no t w illing to continue to accept overwork. W ithout the over­

work, their exhaustion level gradually will dismiss. W hen their exhaustion level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93
reaches zero (indicating that they are fully recovered from exhausted overwork),

they will accept overwork, if needed.

& 1: actual staff prod fate 2: nomnat staff prod race 3: Exhaustion Level

200.0 0 '
moo
moo

moo
moo'
saoo

0.00
40.00

0.001aw 12S.W 375.00 500.00

Test Rmp16(Exha£tion Level) Days 5:14 PM Frt. Oct 16,1996

Figure 5.11. The im pact of staff exhaustion level on staff production rate, curve 1:
actual staff production rate; curve 2: nominal staff production rate; curve 3:
exhaustion level.

T est R im # 6.3

Purpose: To test the im pact of schedule pressure on staff m em bers' average produc­

tivity.

Assum ptions:

1. Only 40% of the project's expected staffing initially is allocated (i.e., initial staffing

factor is set at 0.4).

2. No requirem ents change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94
3. N om inal staff production rate (nominal staff prod rate) is assum ed to be a constant

(i.e., independent of the workforce m ix ratio).

Project scenarios: As show n in figure 5.12, curve 3 (schedule pressure) begins to rise

as a result of a perceived gap betw een the actual developm ent progress and the

p lanned developm ent progress. Curve 2 (actual staff prod rate) also rises in response

to the increasing schedule pressure. This indicates that project staff m em bers, w hen

they feel a pressure in their project schedule, will w ork faster to m ake u p fo r w hat

has fallen behind.

Conclusions: The data, as depicted in figure 5.12, clearly shows that staff members''

average production rate depends on the degree of project schedule pressure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

1: normal staff prod rata Z actual staff prod rate 3: schedule pressure

1: 100.00
2: 60.00
3: 8.00

1: 70.00
Z 65.00
3: 4.00

1: 40.00
Z 50.00
3: 0.00

"\] 8

Figure 5.12. The effect of schedule pressure on. staff production rate, curve 1:
nom inal staff production rate; curve 2: actual staff production rate; curve 3:
schedule pressure.

5.3 System T esting

To place faith in sim ulation m odel-based analyses and policy recom m enda­

tions, we have to know the degree to w hich those analyses m ight change as reason­

able alternative assum ptions are built into the m odel. First, we w ant to m ake sure

o u r m odel produces sim ilar behavior, w ith m inor variations in equation form ula­

tions and param eter values. Next, w e w an t to know if the CSE-SD m odel is capable

of generating project behaviors similar to those reported in the literature. To conduct

the test, we calibrate CSE-SD against the data reported in Abdel-H am id and M ad-

nick [7]. O ur purpose is twofold: (1) to u se their da ta and sim ulated results as a refer­

ence and (2) to compare our sim ulated results w ith theirs. The key statistics of the

0.00 100.00 200.00 400.00 500.00

Test Run: p26 (Schedule Pressure) Days 10.19 PM Tue. Apr 13. 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96
project (called EXAMPLE) tha t w e compare are sum m arized in appendix C. More

detailed inform ation is included in [7].

Since the requirem ents phase and m ultiple-team concurrent developm ent

issues are no t addressed in the AHM model, data is no t com pletely available to fully

validate the entire m odel. The m odel components that are validated include Project

Control, Development Manpower Needed, System Integration and Test Manpower Needed,

Development Dejects and Rework, Work Force, Staff Productive Time, Staff Productivity,

Development Manpower Allocation, System Integration and Test Manpower Allocation,

Development Work Flow, System Integration and Test, Project Scope Change, and Plan­

ning. M odel com ponents tha t are not validated include Interteam Interactions, Require­

ments Manpozoer Allocation, and Requirements Manpozver Needed. These three sectors

are calibrated against the COCOMO m odel [22-23,29] and are tested in chapter 7.

We com pare seven key project measures, namely, perceived job size, perceived

project cost, cum ulative units developed, cum ulative units tested, scheduled com­

pletion date, cum ulative project cost, and w ork force distribution pattern. The com­

parisons of these key project statistics are illustrated in figures 5.13 to 5.16. Figure

5.13 displays three key project measures: perceived project size, cum ulative units

developed, and cum ulative units tested. The "perceived project size" curve depicts

the pa tte rn of how the project scope was changed over tim e after the discovery of

unp lanned developm ent units. The real size of the project is 64 KLOC (1067 develop­

m en t units), bu t w as initially estim ated to be 42.88 KLOC (715 developm ent units).

The "cum ulative units developed" and "cum ulative units tested" curves show how

the developm ent units are com pleted and tested over time. The patterns of these two

curves are very close to that of the AHM, especially in the first half (prior to day 220)

of the "cum ulative units developed" curve. However, after that, the CSE-SD sim u­

lated project progress is faster than that of the AHM, although the difference is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97
significant. The reason tha t causes the difference stems from the difference in work

force level. As indicated in figure 5.16, after day 220, CSE-SD has a h igher work force

level than that of the AHM. More w ork force m eans m ore tasks can be done w ithin

the sam e period of time.

Figure 5.14 shows the cumulative project effort expenditure an d the change in

estim ated project cost. O ur simulated "cum ulative project cost" curve is alm ost iden­

tical to that of the AHM prior to day 200. AHM produces a higher effort expenditure

after day 200 because its w ork force curve reaches the peak earlier than that of CSE-

SD. In fact, the AHM sim ulated project has more people on board than that of CSE-

SD w ith in the period of day 160 to 220. This explains w hy the project cost accumu­

lates a t a faster pace in AHM than in CSE-SD.

The "perceived project cost" curve shows how m anagem ent adjusts the esti­

m ated project cost as a result of the discovery of unplanned developm ent units.

Overall, the two sim ulated curves are similar before day 280. After that, the AHM

curve displays a n imm ediate uprise w hich is not seen in the CSE-SD curve. The rea­

son for the difference lies in the difference in project control mechanisms. In CSE-SD,

w hen new tasks are discovered, the adjustm ent of estim ated project costs includes

bo th the developm ent cost and the system testing cost. The estim ated project cost is

adjusted well before conducting the system test phase. Therefore, w e do not see any

sharp change in the perception of the project cost right before conducting system

test. However, the AHM model adjusts the estim ated project cost righ t before and

during the system test phase. The other reason tha t causes the difference is that CSE-

SD has a sm aller project cost than that of the AHM (3620 m an-days in CSE-SD as

opposed to 3795 m an-days in AHM).

As illustrated in figure 5.16, CSE-SD produces a Rayleigh-curve w ork force dis­

tribution pattern, w ith a peak work force of around 11 project staff. The shape of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98
curve is very close to tha t of the AHM model. However, after a round day 220, the

CSE-SD curve deviates from that of the AHM. The CSE-SD w ork force curve reaches

its peak at a round day 220 and gradually tapers off to around 8 staff on board a t the

end of the project. However, in AHM, the w ork force curve reaches its peak a t

around day 190 an d gradually tapers off to around 7 staff on board a t the end of the

project.

1500
CSE-SD

A H M

1125

J23H Perceived
project size.su

5a .

ua

75 0

C u m u la tiv e
un its tested

375

0 100 200 3 0 0 40 0 500

Time (working days)

Figure 5.13. Comparison of project progress of
the EXAMPLE project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5000

CSE-SD

A H M
Percd red

3750 project cost ^

i 2500

Cumulative
pro ect cost

1250

0 400100 500200 300

Tim e (Days)

Figure 5.14. C om parison of project cost of the EXAMPLE project.

■oac
Q.
Eo

3-o
u

C/5

600

CSE-SD-----
A H M500

400

300

200
100 200 300

Time (working days)

400 500

Figure 5.15. C om parison of scheduled com pletion date of
the EXAMPLE project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

(3SE-SD
AH M —

%

0 100 200 300 400 500

Tim e (working days)

Figure 5.16. Com parison of w ork force distribution of
the EXAMPLE project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6
BROOKS' LAW REVISITED

6.1 Introduction

Despite the recent advances in software developm ent and m anagem ent tech­

nologies, software developm ent continues to suffer schedule delays and budget

overruns. W hen a project is behind schedule, software m anagers respond by bring­

ing people into the project. The result is, as suggested by the fam ous Brooks' Law

[24], a further delayed or even collapsed project. Brooks developed the law through

observation of m any projects and derived the generalization. H is explanation was

quite reasonable and convincing. However, it becomes a debilitating statem ent to

any software project m anager who is faced with a late project.

In this chapter, w e perform an in-depth study using the proposed CSE-SD

model. In specific, we will use CSE-SD to answer tw o questions: (1) W hat is the

impact of adding people late in a software project? Will the project be completed ear­

lier or be delayed even further, as predicted by Brooks' Law? an d (2) W hen is the best

time to add people into a software project and how m any people should be added?

The rem ainder of this chapter is organized as follows. Related studies on

Brooks' Law are reviewed in section 6.2. Section 6.3 exam ines the dynamic implica­

tions of Brooks' Law. The results of our study are presented in section .

6.2 R elated S tudies on Brooks' Law

Brooks' Law has been addressed extensively in the past. Gordon and Lamb

studied Brooks1 Law and suggested that the best w ay to recover from a slipping

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102
schedule is to ad d m ore people than m ight be expected to be necessary, and to add

them early [38], Three factors are considered in their study: tim e loss due to new staff

learning, tim e loss due to teaching by experienced staff, and tim e loss due to group

com m unication. They suggest adding more m anpow er than you think is necessary

as soon as you sense trouble, then do not change anybody 's job until the project is

finished.

W einberg addresses Brooks' Law from the system dynam ics perspective [84].

H e argues th a t the effect of Brooks' Law is caused by an increased coordination and

training overhead. More coordination overhead m eans m ore w ork has to be done.

The increased training load on the experienced w orkers leads to a reduced am ount

of productive w ork being done. The effect of Brooks' Law can be m ade even w orse

w hen m anagem ent takes erroneous actions. For example, w hen m anagem ent w aits

too long to com m unicate the problem and attem pts "big" corrective actions, this

usually leads to a project collapse.

A bdel-H am id and M adnick studied Brooks' Law using their system dynam ics

model. Two im portant, bu t unrealistic, assum ptions are m ade in their study. First,

their m odel assum ed that developm ent tasks can be partitioned, bu t that there is no

sequential constraint am ong them. The developm ent production rate depends solely

on available m anpow er, not on sequential constraint. In reality, if tasks have to be

done sequentially, then adding more people will no t speed up the developm ent pro­

cess, since there are no t enough tasks ready for them to w ork on. You expend people

hours, b u t get little results [64], The num ber of m onths of a project depends upon its

sequential constraints. The maxim um num ber of staff m em bers depends upon the

num ber of independen t subtasks.

A nother assum ption is that project m anagers continuously will add new peo­

ple as long as they sense a shortage in m anpower. In reality, project m anagers can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103
only ad d new people a few times th roughou t the entire project life cycle. The tw o

unrealistic assum ptions lead to their conclusion that "add ing m ore people to a late

project alw ays causes it to become m ore costly bu t does no t alw ays cause it to be

com pleted later" ([4], [7]). The increase in the cost of the project is caused by the

increased training and com m unication overhead, which, in effect, decreases the pro­

ductivity of the average team m em ber and , thus, increases the project's person-day

requirem ents. Only w hen the incurred training and com m unication overheads ou t­

w eigh the increased productive m anpow er will the addition of new staff m em bers

translate into a later project completion time.

In this chapter, we study Brooks' Law using m ore realistic assum ptions. The

sequential constraint of a software project is considered in our model. We also m ake

an assum ption that people are added into the project only once throughout the entire

developm ent life cycle, because it is no t easy to obtain approvals from u p per m an­

agem ent to a d d m anpow er frequently to any project.

6.3 D ynam ics of B rooks' Law

The dynam ics of Brooks' Law starts w ith m anagem ent bringing new staff into

a project. Three effects, as illustrated in figure 6.1, are: (1) an increase in com m unica­

tion and training overhead, (2) an increase in the am ount of w ork repartitioning, and

(3) an increase in the total m anpow er available for project developm ent.

W hen new staff are brought in, they require a certain level of training, and this

w ill take aw ay part of the old staff's productive time. Also, m ore people require

m ore com m unication. As a result, the total project m anpow er resources also

decrease. Less total project m anpow er m eans less m anpow er for developm ent and

decreased average w ork rate. This results in project progress being delayed even fur­

ther and leads to another round in the people-hiring feedback loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104
The second effect of bringing in new people m idw ay in the project occurs w hen

w ork needs to be repartitioned. The w ork currently being perform ed by old staff

needs to be repartitioned so some of it can be assigned to new staff. Project staff, both

new and old, have to adapt to, and learn, new tasks. The coordination overhead also

is increased, especially w hen the w ork is not well partitioned.

Another im pact of bringing in new people is that more people are available to

be assigned to the project. As a result, the average work rate, as determ ined by the

total num ber of project staff and the average staff productivity, also increases. An

increase in the average work rate m eans w ork is being done a t a faster pace, and

eventually will catch up w ith planned progress. As a result, the degree of schedule

slippage is reduced, which reduces the need to bring new people into the project.

As schedule pressure rises, part of the planned QA w ork m ight be skipped. As

a result, the defects contained w ithin the w ork product remain undetected, w hich

leads to defect amplification. Also, under extreme schedule pressure, project staff are

prone to com m it more defects than normal. The increased am ount of defects m eans

that part of the planned m anpow er for developm ent now has to be devoted to defect

correction. W ith less m anpow er available for development, the project is delayed

even further, w hich causes the schedule pressure to rise and triggers another defect

am plification "vicious cycle" [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

N u m b e r o f
n ew w o rk fo rce

C o m m u n ic a tio n &
t r a in in g o v e r h e a d

A m o u n t o f
w o rk p a r t i t io n in g

S c h e d u le
s l ip p a g e

T im e lo ss d u e to
w o rk p a r t i t io n in gS c h e d u le

p re s s u re
T o ta l d a ily
m a n p o w e r

A v e ra g e
p r o d u c t iv e tim eD efec ts c o m m itte d

p e r ta skQ A s k ip p e d

T” -
D e fec ts

r e w o rk e f fo r t

S e q u e n tia l
c o n s tra in t

P ro je c t
p ro g re s s

M a n p o w e r a v a ila b le
fo r d e v e lo p m e n t

A v e ra g e
w o rk ra te

Figure 6.1. The dynam ics of Brooks' Law.

Unlike the Abdel-Ham id and M adnick m odel, we take the sequential con­

straint of a software project into consideration in our model. One sim ple approach to

m odel sequential constraint is to sam ple a software developm ent PERT chart into a

sequence of task groups <TGi, TG2, TG3, ...,TGn>. Tasks w ithin TG2 have to w ait for

all the tasks in TG1 to finish before they can start. W hen all tasks in TGX are com­

pleted, the project is perceived to be N ^ / N com pleted, w here and N are the total

num ber of tasks in TG1 and in the entire project, respectively. For example, as show n

in figure 6.4 (a), w e sam ple the PERT chart into a sequence of four task groups,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106
namely, <[Requirements, Test Plan}, [Design, Test Data, Test Drivers}, [Code, Document},

[Product Test}>. The Design task, w hich is in the second task group, has to w ait for

the Requirements task to complete before it can start. W hen all the tasks w ith in the

first task group are com pleted, the project is perceived to be 25% (i.e., 2 /8) complete.

The project proceeds to the second task groups w ith 37.5% of the tasks ready for

assignm ent. They can be perform ed a t the same time and in any order.

Sequential constraint, as m odeled as "degree of concurrency" (DC), is defined

as the fraction of the num ber of tasks (including developm ent and testing) tha t are

ready to be w orked on and the num ber of tasks project staff are able to perform . As

show n in figure 6.4 (b), the num ber of tasks that project staff can perform is deter­

m ined by m ultip lying "the am ount of daily m anpow er allocated" by "staff's average

productivity." For example, degree of concurrency = 0.8 m eans only 80% of the tasks

tha t project staff are able to perform are ready for assignm ent. To simplify, we

assum e that the discovered unplanned tasks are uniform ly distributed am ong task

intervals. Therefore, the degree of concurrency remains unchanged before and after

unplanned tasks are discovered. By changing the values of this param eter, w e can

exam ine the im pact of different degrees of sequential constraint on project cost and

developm ent cycle time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

< l/i ♦ y a * z / i)

Work Rate
Tasks To Be

Worked
Taste

Worked

A retafe Scan1 Daily Manpower
Productivity Allocated

(a) (b)

Figure 6.2. M odeling sequential constraint, (a) A simple software developm ent
PERT chart [22]; (b) The developm ent and testing rate depend on sequential
constraint.

6.4 Simulation. Results

We present our simulation results w ith a focus on two questions: (1) W hat is

the im pact of adding people to a software project, in terms of project com pletion

tim e and cost? And, (2) W hen is the best time to add people into a software project,

and how m any people should be added? We first address question 1: w hat is the

im pact of adding people to a software project, in term s of project com pletion tim e

and cost? To answ er this question and to com pare our results w ith those of Abdel-

H am id an d M adnick (AHM), we use, in this study, the same m anpow er addition

assum ption that they did. However, we ad d the sequential constraint factor to reveal

its effect. We continue to add people as long as there is a shortage in m anpow er until

a preset date. For example, as indicated in figure 6.3 (a), for a project w ithout

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108
sequential constraint (i.e., DC = 1.0), if w e continue to add people w henever we

sense a shortage in m anpow er until 36 (i.e., 0.3*120) w orking days rem aining in the

planned project schedule, then the project is expected to complete at around d ay 435.

However, after 180 w orking days remain (i.e., 1.5*120), managem ent is n o t 100%

w illing to hire enough people as desired. The total cost of the project is 3686 person-

days, as show n in figure 6.3 (b).

DC-Q7 -O - DC- LO - D C -0 .7 - 0 - 0C « LO

§500
515

350
0 30 60 15012) 1® 210

Tims R uanccr
(Hong dcfay*■ Asan&Kkxi

7000

6500

5820

5 5500

5 5000

>4391

3500

3000
30 600 90 120 180 210150

Ttncfonmaer
(Hiring delay ♦ AsumTadoo delay)

(a) (b)

Figure 6.3. The impact of work force stability on project duration and cost, (a)
project duration; (b) project cost.

As show n in figure 6.3, a more aggressive m anpow er acquisition policy results

in a shorter project duration, but increases project cost. We simulated different m an­

pow er acquisition policies by changing the value of Time Parameter (TP) and deter­

m ined tha t 398 working days is the shortest possible schedule one can achieve for

this specific project. Time Parameter is defined as the sum of the time to hire new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109
staff (hiring delay) and the time to train and assim ilate new hires (assimilation

delay). O ur results indicate that Brooks' Law holds only w hen the Time Param eter is

few er than 40 w orking days for a m edium -sized COCOMO organic-mode project

EXAMPLE. O ur result is very sim ilar to that of AHM.

The trend for the DC = 0.7 project (i.e., a project w ith a certain degree of

sequential constraint) is similar to tha t of DC = 1.0 project; project duration continues

to decrease w hen new work force is added. However, m anagem ent pays the price of

increasing project cost. For projects w ith certain degree of sequential constraint (i.e.,

DC = 0.7), Brooks' Law holds w hen the Time Param eter is less than 60 w orking days-

abou t one m onth earlier than that of the DC = 1.0 project (40 w orking days). This

im plies that sequential constraint does play a role in this situation. If m anagem ent

fails to sense the shortage in m anpow er and does no t m ake a timely decision to ad d

w ork force, then the project will be delayed further, especially if there is a certain

degree of sequential constraint am ong developm ent tasks. Project cost continues to

rise w hen new people are added, as illustrated in figure 6.3 (b). Project cost increases

nonlinearly w hen Time Param eter is less than 90 w orking days. This implies that

adop ting a m ore aggressive m anpow er acquisition policy late in the project w ill cost

more.

Figure 6.4 shows the im pact of sequential constraint on project duration and

cost. As expected, as the degree of sequential constraint increases (degree of concur­

rency decreases), project duration will increase, and so does the project cost. H ow ­

ever, project duration and cost increase nonlinearly w hen DC is less than 0.5. The

resu lt indicates that a tighter sequential constraint has a stronger negative im pact on

project duration and cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

750

700

_sas.

e 550
517

500
458

450

400
03 03 0.4 0.5 0^ 0.7 0 J 0.9 I 1.1 12.

Dfcgrec o f concurrency

9500

8470
8500

$ 7«»

6500
.5752

2 5500

44D1
4005

3500
0.4 0.5 0.60.2 03 0.7 0.8 0.9 I l.I I.

D egree o f concurrency

(a) (b)

Figure 6.4. The im pact of degree of concurrency and project duration and cost.
(a) project duration; (b) project cost.

We next address question 2: w hat is the best time to ad d people into a softw are

project and how m any people should be added? Unlike the AHM m odel, we take the

sequential constraint of a software project into consideration. Besides, to answ er the

question, we m ake a m ore realistic assumption that people are added into the project

only once th roughout the entire developm ent life cycle. We conducted 24 sim ulation

runs; 12 on projects w ith perfectly partitionable tasks (PPT) [24] and 12 on projects

w ith a certain degree of sequential constraint. The results are sum m arized in figure

6.5.

A t the specified milestone date, the desired w ork force tha t is needed to com­

plete the project on tim e is brought into the project. For example, a t day 20 (one

m onth after the project was launched), the desired new w ork force perceived needed

to com plete the project on time is 4.16 for PPT projects (i.e., DC = 1.0). This is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l
because, in the beginning of the project, there are only four engineers on board,

w hile eight engineers are expected (i.e., 50% understaffed). M anagem ent will need

to b ring in the other four people as initially p lanned plus extra m anpow er to make

u p for the delayed w ork caused by having four engineers doing the w ork that is

expected by eight engineers. In this specific organic-mode project, there is a thresh­

old time T-about one-third (i.e., 140/472) of the developm ent life cycle-before which

add ing people into a software project will no t extend project duration. However,

after the threshold time, adding people to the project will cause the scheduled com­

pletion date to extend.

The DC = 0.8 project also has a threshold time a t day 160; one m onth (20 w ork­

ing days) later than that of the DC = 1.0 project. However, it is also a t about one-third

(i.e., 160/508) of the entire developm ent life cycle. After sim ulating projects w ith dif­

ferent degrees of concurrency (from DC = 0.5 to 1.0), w e found that the threshold

tim e will shift forw ard as the degree of concurrency increases. But the one-third

po in t does not change. As show n in figure 6.5 (b), adding people into a software

project will, in general, cause the project cost to increase.

There could be num erous alternatives betw een the two extreme m anpow er

acquisition policies w e use in our sim ulation runs, namely, continuous m anpow er

acquisition policy and one-time m anpow er acquisition policy. The outcomes of

adop ting different m anpow er acquisition policies are expected to fall betw een our

sim ulated results. For organic-mode projects, w e predict a project schedule-effective

tim e range from one-third of the project to halfway into the project life cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

DC=1.0 • DC=0.8 -D C = 1.0 -D C = 0.8

560

540
X !

520
T3

500

£ 480

460
50 100 150 200 250

Restaffing date

5500

>> 5000

« 4500

o 4000

o ' 3500
c.

3000
50 100 150 200

R estaffing d a te

250

(a) (b)

D C = 1 .0 - * - D C = 0 . 8

CO

T3
60
C

12uO

o
••B

u,3T3
uOJ
"o'i-)P-

28

24

20

16

12

8

4

50 100 150 200 250

Restaffing date

(c)

Figure 6.5. Im pact of restaffing time on project duration, cost, and num ber of
needed w ork force, (a) project duration; (b) project cost; (c) num ber of needed new
w ork force.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113
6.5 Summary

We perform ed an in-depth study of Brooks' Law using the CSE-SD m odel. The

results of the study are based on three sets of sim ulation runs w ith different assum p­

tions. First, w e used the sam e assum ptions as those of AHM: (1) project tasks can be

partitioned, but there is no sequential constraint am ong them; and (2) m anagem ent

continuously will add new people as long as they sense a shortage in m anpow er.

U nder these assumptions, our results are consistent w ith those of AHM , namely,

ad d in g m ore people to a late project alw ays causes it to becom e m ore costly b u t does

n o t alw ays cause it to be com pleted later.

Next, w e used a m ore realistic assum ption by considering sequential con­

straint. We found out that continuously add ing people to a late project m akes it later

and m ore costly. This confirms Brooks' Law. However, these results are no t consis­

ten t w ith those of AHM's. This implies that sequential constraint does play a role in

project development.

Finally, we added another realistic assum ption tha t people are a d d ed to a

project only once throughout the entire project life cycle because it is difficult to

obtain frequent m anpow er add ition approvals from upper m anagem ent. We found

tha t there is an optimal time range for add ing people w ithou t delaying a project. It

ranges from one-third to halfway into the project developm ent. If softw are project

m anagers cannot make a tim ely and accurate decision on project restaffing prior to

halfw ay into the project, the project has a high probability of being delayed, espe­

cially w hen task sequential constraints are involved. However, add ing people d u r­

ing the project always causes the project cost to increase.

In summary, it is always costly to add people to a late project. W hen sequential

constrain t is significant, add ing people late in a project w ill m ake it later. We also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114
have found, in this study, an optim al tim e range for adding people w ithout delaying

a project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 7
ON THE IMPACT OF CONCURRENT SOFTWARE

ENGINEERING
7.1 Introduction

In this chapter, we conduct a set of sim ulation experiments using the CSE-SD

m odel. The objective of the experimentation is twofold: (1) to further dem onstrate

the capability of CSE-SD to serve as a m anagem ent policy exploration tool; an d (2) to

investigate the im pact of concurrent software engineering on project cost and devel­

opm ent cycle time. Specifically, the following tw o sets of questions are addressed:

1. W hat are the effects of the "phase overlapping" developm ent approach on project

cost and developm ent cycle time? Will phase overlapping reduce project d u ra ­

tion a n d / or cost? W hat is the optimal degree of phase overlapping in term s of

project cost and development cycle time? In other words, w hat are the best

degrees of phase overlapping that lead to shortest project duration a n d /o r low­

est project cost?

2. W hat are the effects of the "synchronous concurrent subsystems (SCS)" develop­

m ent approach on project duration and cost? Will the SCS approach reduce

project duration a n d / or cost? For a given project, w hat is the optimal num ber of

subsystem s (subteams) that lead to the shortest project duration and low est cost?

Before w e use the CSE-SD model to answ er the above questions, w e need to

select appropriate values for model param eters. To assess the impact of concurrent

software engineering practice in general, w e will calibrate CSE-SD against the

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116
COCOM O m odel. Calibration refers to assigning specific values to m odel param e­

ters that produce project behaviors sim ilar to those predicted by COCOMO.

M odel calibration is presented in section 7.2. The first set of questions regard­

ing the effects of the "Phase Overlapping" developm ent approach is add ressed in

section 7.3. The effects of the "Synchronous Concurrent Subsystem s" developm ent

approach are investigated in section 7.4 w here the second set of questions are

addressed.

7.2 M odel Calibration

To examine the effects of the Phase O verlapping concurrent developm ent

approach, w e calibrate CSE-SD against the COCOMO 2.0 m odel [23].

7.2.1 The BASELINE Software Project

We use a baseline COCOMO 2.0 (called BASELINE) project as a reference to

exam ine the effects of the Phase Overlapping developm ent approach using the CSE-

SD model. BASELINE is a 128 KLOC large project w ith the values of the seventeen

COCOMO 2.0 cost drivers and five scale factors are set to "nom inal." In COCOM O,

the software developm ent process is d ivided into four m ajor phases: P lan and

Requirements, Product Design, Program ming, and Integration and Test. The overall

phase distribution of project effort, schedule, and full-tim e-equivalent softw are per­

sonnel (FSWP) for the BASELINE project is sum m arized in table 7.1.

COCOM O-estimated project developm ent effort, including the effort sp en t in

the Plan and Requirements phase, the Product Design phase, the Program m ing

phase, and the Integration and Test phase, is 704.9 person-m onths (i.e., 46.0 + 112.0 +

362.4 + 184.5), or 13,393 person-days (PDs).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

117

Table 7.1. Phase d istribution of project effort, schedule and personnel

PHASE EFFORT (person-months) SCHEDULE (month) FSWP
Plans and Requirements 46.1 (876 person-days) 6.0 7.7
Product Design 112.0 (2128 person-days) 7.4 15.2
Programming 362.4 (6886 person-days) 12.0 30.2

- Detailed Design 158.1 - -
- Code and Unit Test 204.2 - -

Integration and Test 184.5 (3506 person-days) 7.9 23.3

7.2.2 M apping COCOMO Development Activities to CSE-SD

COCOMO includes eight major activities: requirements analysis, product design,

programming, test planning, verification and validation, CM/QA, project office functions,

and manuals [22]. The requirements analysis activity is m odeled in the Requirements

Work Flozv sector. The product design and programming activities are m apped to the

Development Work Flozv sector. The verification and validation activity perform ed du r­

ing the Integration and Test phase is m odeled in the System Integration and Test sector.

The QA activity m odeled in CSE-SD includes the verification and validation and

CM/QA activities perform ed in COCOMO's Plans and Requirements, Product Design,

and Programming phases. The test planning, project office, and manuals activities are

considered part of the requirem ents specification and software developm ent in CSE-

SD. For example, during the requirements phase, the manuals activity dealing w ith

outlining portions of users ' m anual is considered part of a requirem ents specifica­

tion activity.

The distributions of project effort, schedule, and personnel of the eight differ­

en t COCOMO activities in each phase are show n in tables 7.2, 7.3, 7.4, and 7.5,

respectively. For example, table 7.3 shows the breakdow n of project effort, schedule,

and personnel in the "Product Design" phase. In the "Product Design" phase, 14.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118
person-m onths of effort are spent on the requirements analysis activity, 45.9 person-

m onths of effort are spent on the product design activity, 15.1 person-m onths of effort

are spen t on the programming activity, and so on.

Based on the above COCOMO-to-CSE-SD m apping and the data sum m arized

in tables 7.2 to 7.5, equivalent CSE-SD distributions of project effort and schedule are

sum m arized in tables 7.6 to 7.11. The data listed in table 7.6 show the effort, sched­

ule, an d personnel distribution of the BASELINE project w ithou t requirem ents

change. The data are derived by setting the COCOMO 2.0 BRAK (breakage percent­

age) factor to 0%. They are calculated as follows:

• Requirements phase

1. Requirem ents specification effort = (20.8 +1.8 + 5.8 + 2.3) person-m onths * 19

w orking d ay /m o n th = 583 person-days

2. Requirements QA effort = (3.5 +1.4) person-months * 19 w orking d a y s /

m onth = 93 person-days

3. Developm ent effort spent in the Requirements phase = (8.1 + 2.5) person-

m onths * 19 w orking d ays/m on th = 201 person-days

• Developm ent phase

1. Software developm ent effort = ((45.9 +15.1 + 6.7 +11.2 + 7.8) + (29.0 + 204.7 +

19.9 + 21.7 + 18.1)) person-m onths * 19 working d ay /m o n th = 7,222 person-

days

2. Developm ent QA effort = ((8.4 + 2.8) + (30.8 + 23.6)) person-m onths * 19

w orking day s/m o n th = 1246 person-days

3. Rework: 19 * (14.0 + 14.5) = 542 PDs

• System Integration and Test phase

1. Integration and test effort = (71.9/2 + 5.5 + 52.6 +12.9 + 14.8 +12.9) person-

m onths * 19 w orking days/m on th = 2,560 person-days

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119
2. Rework: (4.6 + 9.2 + 71.9/2) person-m onths * 19 w orking d a y s /m o n th = 946

person-days

The phase distributions of project effort under different degrees of require­

m ents changes (from 10% to 40%) are calculated following the sam e procedure. They

are sum m arized in tables 7.7 to 7.11.

Table 7.2. The breakdown of project effort, schedule, and personnel
in the Plan an d Requirements phase

Activity Effort (person-month) Schedule (month) FSWP
Requirements Analysis 20.8 6.0 3.5
Product Design 8.1 6.0 1.3
Programming 2.5 6.0 0.4
Test Planning 1.8 6.0 0.3
Verification and Validation 3.5 6.0 0.6
Project Office 5.8 6.0 1.0
CM/QA 1.4 6.0 0.2
Manuals 2.3 6.0 0.4

Table 7.3. The breakdown of project effort, schedule, and personnel
in the Product Design phase

Activity Effort (person-months) Schedule (month) FSWP
Requirements Analysis 14.0 7.4 1.9
Product Design 45.9 7.4 6.2
Programming 15.1 7.4 2.1
Test Planning 6.7 7.4 0.9
Verification and Validation 8.4 7.4 1.1
Project Office 11.2 7.4 1.5
CM/QA 2.8 7.4 0.4
Manuals 7.8 7.4 1.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7.4. The breakdow n of project effort, schedule, and personnel
in the Program m ing phase

Activity Effort (person-month) Schedule (month) FSWP
Requirements Analysis 14.5 12.0 1.2
Product Design 29.0 12.0 2.4
Programming 204.7 12.0 17.1
Test Planning 19.9 12.0 1.7
Verification and Validation 30.8 12.0 2.6
Project Office 21.7 12.0 1.8
CM/QA 23.6 12.0 2.0
Manuals 18.1 12.0 1.5

Table 7.5. The breakdow n of project effort, schedule, and personnel
in the Integration and Test phase

Activity Effort (person-month) Schedule (month) FSWP
Requirements Analysis 4.6 7.9 0.6
Product Design 9.2 7.9 1.2
Programming 71.9 7.9 9.1
Test Planning 5.5 7.9 0.7
Verification and Validation 52.6 7.9 6.6
Project Office 12.9 7.9 1.6
CM/QA 14.8 7.9 1.9
Manuals 12.9 7.9 1.6

Table 7.6. CSE-SD-equivalent activity distribution of effort
(person-months) by pnase: BRAK = 0%

Activity \ Phase Requirements Development srr
Specification 583 - -
Development 201 7,222 -
Integration and Test - - 2,543
QA 93 1,246 -
Rework - 542 945

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

Table 7.7. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 10%

Activity \ Phase Requirements Development SIT
Specification + Rework 652 - -
Development 224 8,067 -
Integration and Test - - 2,857
QA 103 1,391 -
Rework - 604 1,055

Table 7.8. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 20%

Activity \ Phase Requirements Development SIT
Specification +• Rework 718 8,919 -
Development 249 - -
Integration and Test - - 3,157
QA 114 1,537 -
Rework - 665 1,169

Table 7.9. CSE-SD-equivalent activity distribution of effort
(person-m onths) by phase: BRAK = 25%

Activity \ Phase Requirements Development SIT
Specification 754 - -
Development 260 9,344 -
Integration and Test - - 3,312
QA 120 1,609 -
Rework - 699 1,226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

Table 7.10. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK = 30%

Activity \ Phase Requirements Development SIT
Specification + Rework 789 9,774 -
Development 272 - -
Integration and Test - - 3,467
QA 125 1,685 -
Rework - 732 1,282

Table 7.11. CSE-SD-equivalent activity distribution of effort
(person-months) by pnase: BRAK = 40%

Activity \ Phase Requirements Development SIT
Specification + Rework 859 - -
Development 296 10,648 -
Integration and Test - - 3,775
QA 135 1,835 -
Rework - 798 1397

7.2.3 Calibrate CSE-SD A gainst COCOM O

We next calibrate CSE-SD to produce sim ilar project behaviors as those of

COCOMO for the BASELINE project, including the breakdow n of project effort,

schedule, and full-time-equivalent software personnel.

To produce similar software personnel distribution patterns, w e adjust the val­

ues of two CSE-SD param eters: planned WF (the originally planned w ork force) and

staffing plan stability (the degree that project m anagem ent stays w ith the original

staffing plan). These two param eters, together w ith the desired w ork force level (tar­

get WF) as determ ined in the Project Control sector, determ ine the project staff level

needed to complete the project on the scheduled com pletion date.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123
The planned WF parameter, as depicted in figure 7.1, shows the original staffing

p lan as a function of project developm ent time. For example, a t the beginning of the

project (Time = 0), the planned full-tim e-equivalent software personnel is six. The

staffing plan stability param eter is m odeled as a function of the ratio of project tim e

rem aining and WF production delay (average tim e to hire and assim ilate new staff

m em bers), as illustrated in figure 7.2. For example, if the WF production delay is 120

w orking days, and there are 600 w orking days rem aining to complete the project

(i.e., the project time rem aining/W F production delay ratio is 600/120 = 5), then the

value of the staffing plan stability param eter is 1. In other words, m anagem ent will

stay w ith the original staffing plan (i.e., the project staffing plan is stable). However,

w hen the value drops below 1, m anagem ent will consider changing the original

staffing plan and either hire new people or transfer staff mem bers out of the project,

depending on the actual progress of the project.

40

35

g 30

25

20

15

10

5

0
0 100 200 300 400 500 600 700

Tim e (working day)

Figure 7.1. P lanned w ork force distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

Occoin
cS
u

o
cn
w

0.8

-S 0 .6

5 0.4

0 50 1 25 353 4 5 54

Project time remaining / WF production delay

Figure 7.2. Staffing plan stability.

I COCOMO ■CSE-SD

35

30
25

20

0
0 60 120 180 240 300 360 420 480 540 600 633

Time (working day)

Figure 7.3. C om parison of FTE software personnel distribution.

A nother thing to consider is to adjust staff mem bers' average productivity to

m atch COCOMO. In CSE-SD, a requirem ent un it is assum ed to be 125 LOC large; a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125
developm ent un it is assum ed to be 60 LOC large [7]. The total num ber of require­

m ents and developm ent units is 1,024 (128,000/125) and 2,134 (128,000/60), respec­

tively. The average productivities of different activities are:

• Requirem ents specification: 1,024/583 = 1.76 requirements per person-day.

• Development: 2,134/ (7,222+201) = 0.287 development units per person-day.

• Integration and testing: 2,134/2,543 = 0.839 units integrated and tested per per­

son-day.

Table 7.12 and figure 7.4 show a close resemblance betw een the data generated

from CSE-SD and those of COCOMO for the BASELINE project w ith 0% require­

m ents changes. For different degrees of requirements changes, we follow the same

procedure to produce a sim ilar behavior for the BASELINE project. The biggest per­

centage difference in project effort betw een COCOMO and CSE-SD is less than 1.2%

(com paring the COCOMO colum n and the C lxR lxD l colum n in table 7.13). By cali­

b rating CSE-SD against COCOMO under different degrees of requirem ents changes

to produce sim ilar nom inal project behaviors, we are more confident about the data

generated from CSE-SD w hen w e change the values of the two m anpow er allocation

param eters (fraction daily manpozver to Requirements phase and frac dev manpozver to

SIT) to sim ulate different degrees of phase overlapping.

Table 7.12. Com parison of project effort (person-days)

COCOMO CSE-SD % difference
Project effort 13,393 13,366 0.22%
- Requirements 676 681 0.74%
- Development 9,211 9,246 0.38%
- Integration and test 3,506 3,440 1.38%

Project duration 633 635 0.16%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

O C O C O M O CSE-SD

14000

^ 12000

7 10000

8000
CL.

6000

4000

^ 2000

0
0 100 200 300 400 500 600 700

Tim e (w orking day)

Figure 7.4. Comparison of cumulative project effort.

7.3 Im pact of Phase O verlapping

Three counteracting factors determine the outcome of a phase overlapping-

based software developm ent project: (1) the degree of phase overlapping; (2) the

degree of across-phase communication; and (3) the stability of upstream inform ation

and dow nstream sensitivity to changes to the information. As discussed in section

4.2.1, increasing the degree of phase overlapping reduces project developm ent time,

because more w ork is done simultaneously. However, an increased across-phase

comm unication overhead and rework tasks in downstream phase m ight erase the

benefits gained by doing things in parallel. In this section, we w ant to determ ine (1)

the degree of phase overlapping that has the shortest project developm ent tim e and

(2) the degree of phase overlapping that has the lowest project cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127
7.3.1 M odeling Phase O verlapping

Phase overlapping occurs w hen activities of different phases are perform ed at

the sam e time. Phase overlapping m eans project m anpow er resource m u st be allo­

cated to different phases so that activities in different phases can be perform ed

sim ultaneously. Across-phase m anpow er allocation is controlled by tw o param eters:

frac daily M P to reqs phase and frac dev M P to SIT. The frac daily MP to reqs phase param ­

eter determ ines the fraction of the total daily m anpow er to be allocated to the

Requirem ents phase. The rem ainder of the m anpower, after allocating to the

Requirem ents phase, is shared by the D evelopm ent phase and System Integration

and Test phase. The distribution of the rem aining m anpow er to these tw o phases is

controlled by the frac dev MP to SIT param eter.

The two m anpow er allocation param eters are m odeled as graph functions, as

show n in figure 7.5. By adjusting the values of these tw o param eters, w e can sim u­

late different degrees of phase overlapping and investigate their im pacts on project

cost and developm ent cycle time. To exam ine the im pacts of phase overlapping

u n der different degrees and patterns of requirem ents changes, we select three differ­

en t representative phase overlapping modes:

• R1 x D l: It represents a nominal COCOM O project.

• R2 x D2: It represents a m odest degree of phase overlapping.

• R3 x D2: It represents a high degree of phase overlapping.

The general shapes of R l, R2, R3, D l, and D2 are show n in figure 7.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

-R1 R2 - R3 -D i .02

12

0.6

0.4

<3

0.4 0 .6

Fractal specifcalion perceived completed

0.8

12
cn
.o
| 0.S
a | 0.6

■° 0.4

0.750.7 0.85 0.90.8 0.95 1

(a)

FracfcndewfcpmertpemaraJampleed

(b)

Figure 7.5. M odeling phase overlapping; (a) fraction daily m anpow er to
requirem ents phase; (b) fraction developm ent m anpow er to SIT;

7.3.2 M odeling R equirem ents Changes

The stability of the upstream information (requirem ents) and the dow nstream

sensitivity to the changes in the exchanged inform ation is another critical factor that

determ ines the outcome of a phase overlapping project. Requirem ents changes are

the m ajor cause of software project delays and cost overruns, especially under the

situation of phase overlapping.

W hen a requirem ent is changed, you have to a lter design to m eet the changed

requirem ents. You m ight have to throw away p art of the old design, and, because it

has to accom m odate existing code, the new design will take longer than it w ould

have w ithout the change. You also have to discard code and test cases affected by

the requirem ent change an d write new code and test cases. Even code that is other-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129
wise unaffected m ust be retested to m ake sure the changes in other areas have not

introduced any new errors [56].

In CSE-SD, rew ork overhead is partitioned into two parts: (1) the overhead that

results from the increase of developm ent workload; and (2) the overhead incurred

by the requirem ents change to take care of the affected work products. For example,

a requirem ents change is treated as the increase of one unit of regular w ork plus the

overhead to adjust the design, code, test cases, and related docum ents tha t are

affected by the change, w hether it is added, modified, or deleted. W ith a 30%

increase in project size, the project effort is expected to be 30% higher than that w ith­

out a requirem ents change (13,393 person-days for the BASELINE project). W ithout

considering the rew ork overhead, a project 128 KLOC large w ith a 30% requirem ents

change is expected to need 1.3 * 13,393 = 17,411 person-days. COCOM O estim ate of

project effort w ith 30% requirem ents changes is 18126 person-days. The difference

between 18,126 person-days and 17,411 person-days (i.e., project effort w ithout con­

sidering rew ork overhead) is 715 person-days (this is the rew ork overhead).

Rework overhead is captured in the Change Rework Overhead m odel parameter.

Change rew ork overhead is accum ulated a t the rate of daily M P to change rework, as

determ ined by three parameters: nominal rework overhead, rework cost ratio, and daily

MP factor. For example, if project staff m embers spend 50% of their daily time on

project-related production work, then a requirements change w ith 0.5 person-day

nom inal rew ork overhead will cause them to spend one full day (i.e., 0.5/50%) to

rework all affected work products.

On large projects, the cost to rew ork a requirements during architecture design

is typically five times as expensive to rew ork as it would be if it w ere done during

the requirem ents analysis phase; during coding; it is 10 times as expensive; during

unit or system test, it is 20 times as expensive ([22], as cited in [56]). The rew ork cost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130
ratio is show n in figure 7.6. The rew ork cost due to a requirem ents change is deter­

m ined by m ultiplying nom inal rew ork overhead by the rew ork cost ratio.

2S

Figure 7.6. Rework cost ratio.

c t a o

<>.5

too 21XJ 400300 700

Tunc (wiiric day)

Figure 7.7. Three patterns of requirements change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131
Figure 7.7 shows three different requirem ents change patterns. These three

curves represent different patterns of how system requirem ents are stabilized. Curve

C l represents the situation w here m ost of the requirem ents changes occur in the

requirem ents analysis phase. Curves C2 and C3 indicate the situations w here m ost

of the requirem ents changes occur in the design and coding phases, respectively. By

com bining these three requirem ents change patterns w ith the three different m odes

of phase overlapping (i.e., R lxD l, R2xD2, and R3xD2), w e can sim ulate different

project scenarios to assess the im pact of the phase overlapping concurrent develop­

m ent approach.

7.3.3 S im ulation Results

After calibrating CSE-SD against COCOMO, w e use the da ta of the BASELINE

project as a reference to examine the effects of the phase overlapping concurrent

developm ent approach. We perform nine sets of sim ulations (from the C lxR lxD l

com bination to the C3xR3xD2 combination) for each level of requirem ents changes,

ranging from 10% to 40% requirem ents changes.

Figure 7.8 illustrates the effects of the Phase O verlapping concurrent develop­

m ent approach on project developm ent cycle time. The results of the three different

phase overlapping modes are sum m arized in tables 7.13 to 7.15. The sam e results are

depicted in figure 7.10. Am ong the nine com binations of requirem ents change pat­

terns and phase overlapping that w e exam ine (from C lx R lx D l to C3xR3xD2), the

ClxR3xD2 combination has the shortest project developm ent cycle and lowest

project cost. For example, the shortest project developm ent cycle for a 128 KLOC

project w ith 20% requirements changes is 649 (m arked w ith *) w orking days. The

low est project cost is 15,547 person-days.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132
O u r sim ulated results show tha t w hen m ost of the requirem ents changes occur

du ring the requirem ents analysis phase (the ClxRxD curves), phase overlapping can

im prove the developm ent process bo th by reducing project effort and developm ent

cycle time. For example, the aggressive (R3xD2) phase overlapping m ode helps to

cu t the project developm ent cycle tim e from 682 w orking days to 649 w orking days,

w hich is abou t a 4.8% (33/682) im provem ent even w hen the requirem ents change is

20%, as long as the requirem ents changes occur in the requirem ents analysis phase.

A ttem pting a higher degree of phase overlapping under the sam e project situation

also reduces project effort. The savings in this case is about 5.9% (from 16528 person-

days to 15547 person-days)

W hen m ost of the requirem ents changes occur during the p roduct design

phase or later, phase overlapping m ay not be helpful. For example, the m odest

degree of phase overlapping (R2xD2) reduces project developm ent cycle tim e only

w hen requirem ents change is below 30%. Aggressive phase overlapping (R3xD2) is

helpful only w hen requirements change is below 10%. In both cases, the im prove­

m ents in project developm ent cycle tim e are not significant. On the other hand , soft­

w are project m anagers have to pay the price of increased project effort in attem pting

phase overlapping.

As predicted, late requirem ents changes cause project duration and cost to

increase, irrespective of the degree of phase overlapping. The percentage increase in

project cost and developm ent cycle tim e (100x(C3-Cl)/Cl) due to late requirem ents

changes u n d er different degrees of requirem ents changes are show n in figure 7.8 and

7.9, respectively.

W hen requirem ents changes exceed 25%, the R2xD2 case (m odest degree of

phase overlapping) is less sensitive to late requirem ents changes in terms of project

duration increase than the R lxD l case (nominal case). The R2xD2 case has a 10%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133
duration increase as opposed to the 15% increase in the R lxD l case w hen require­

m ents changes is 40%.

The effort penalty due to late requirem ents changes shows a slightly different

trend. All three phase overlapping cases, including the nominal case, display sim ilar

project effort increase patterns, especially w hen the requirements change is below

10%. U nder all situations, the R lxD l case (nominal case) is least sensitive to late

requirem ents changes in term s project effort increase. O ur results show tha t the

R2xD2 case (modest degree of phase overlapping) is least sensitive to late require­

m ents changes in terms of project duration increase and the R lxD l case is least sen­

sitive to project effort increase.

♦ R1 X D1 ■ R2 X D 2 A R3 x D 2

3 20

^ 0&
0 10 20 30 40 50

Percent requirem ents changes

Figure 7.8. Project duration increase due to requirements changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

O R1 x D1 ■ R2 x D2 A R3 x D2

A

A_________
o

i c>
 O-------------

#

10 20 30 40 50

Percent requirements changes

Figure 7.9. Project effort increase due to requirem ents changes.

Table 7.13. N om inal project (R lxD l) w ith different requirem ents
change patterns

Requirem ents change COCO M O C lx R lx D l C 2xR lxD l C 3 x R lx D l

0% 633 (13,393) 635 (13,366) 635(13 ,366) 635 (1 3 ,3 6 6)

10% 657(14 ,951) 658(14,820) 664(15 ,757) 677 (1 6 ,5 6 9)

20% 682(16 ,528) 682(16,366) 681 (17,566) 704 (1 8 ,9 2 3)

30% 705(18 ,126) 706(17,965) 714(19,738) 755 (21,341)

40% 726(19 ,743) 728(19,520) 762(22,681) 837 (24,967)

45

40

35

• I - 30
Cu
c 25
0
£ 2001 w U
S 15

§ 10 u
(2 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

Table 7.14. M odest phase overlapping (R2xD2) w ith different
requirem ents change patterns

Requirements change COCOMO ClxR2xD2 C2xR2xD2 C3xR2xD2
0% 633 (13,393) 618(12,951) 618 (12,951) 618(12,951)
10% 657(14,951) 645 (14,502) 653 (15,495) 654(16,167)
20% 682(16,528) 668 (16,027) 674(17,435) 695 (19,207)
30% 705(18,126) 697(17,707) 702(19,445) 731 (21,916)
40% 726(19,743) 720 (19,273) 747(22,312) 787 (25,581)

Table 7.15. Aggressive phase overlapping (R3xD2) w ith different
requirements change patterns

Requirements change COCOMO ClxR3xD2 C2xR3xD2 C3xR3xD2
0% 633(13,393) 614 (12,879) 614(12,879) 614(12,879)
10% 657(14,951) 628 (14,078) 642(14,934) 654(16,050)
20% 682(16,528) 649(15,547)* 678 (16,979) 695 (19,006)
30% 705(18,126) 679(17,231) 710 (19,090) 770 (22,558)
40% 726 (19,743) 707(18,893) 774 (22,699) 850 (26,699)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

t.\rp
ffujjpn.w) uoiinnp

n.M
iu,|

136

X C l x R l x D l

- A C 2 x R t x D l

- C O C O M O

- C J x R l x D l

s*
■= 7 7 5

I 750

I 725
| 7 0 0

Z 675
2 650

6 2 5 -

4 010 20o 50

P e rc e n t r e q u ir e m e n ts c h a n g e

(a)

2 6 0 0 0

? 2 4 0 0 0

* | 2 2 0 0 0 oe
g . 20000

e
g IKOOO

.5 1 6 0 0 0

^ 1 4 0 0 0

12000

- C O C O M O

- C 2 x R l x D l

1 A-' - -
. - X '

. ▲
- x ‘

C l x R l x D l

- C 3 x R t x D l

P e rc e n r r e q u ir e m e n ts c h a n g e

• C O C O M O

- C 2 x R 2 x D 2

X C I x R 2 x D 2

- • C 3 x R 2 x D 2

HOO -

7 8 0 - -

7 6 0 -

7 4 0 -

7 2 0 -

7 0 0 -

6 X 0 -

6 6 0 -

6 4 0 ;

6 2 0 ■

6 0 0 L

3 0 4 0 5 00 in

P ercen t requirem ents change

(C)

22uuo

| 2u u n u

m u o n •—

I
£ 160110 *--

- - - - - C O C O M O X C 1 x R ix D 2

— A C 2 x R 2 * 0 2 — • ----C 3 s R 2 x O i

Z

a _ - ~k

-iirrmratt change

(d)

X75
5 0

H25

XOO
775
750

7 2 5

7 0 0

6 7 5

6 5 0

6 2 5

6 0 0

 C O C O M O

— A — C 2 x R 3 x D 2

ClxR3xD 2
-C3xR3xD 2

P e rc e n t r e q u ir e m e n ts c h a n g e

(e)

28000

26000

a 24000

I 22000 ŝ 20000

" 18000 I
g " 16000

14000

12000

- COCOMO
- C2xR3xD2

C1xR3x02
- C3xR3xD2

p

/
/

* A

s
/

y

s
X

X

X

V

10 20 30 40

Percent requirements change

(0

50

Figure 7.10. The effects of phase overlapping on project effort and
developm ent cycle time; (a) Project duration (R lxD l); (b) Project effort (R lxD l);
(c) Project duration (R2xD2); (d) Project effort (R2xD2); (e) Project duration
(R3xD2); (f) Project effort (R3xD2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137
7.4 Im pact of Synchronous Concurrent Subsystem s

In this section, we assess the im pact of the SCS concurrency w ith a focus on

two questions: (1) Is the SCS concurrency a feasible approach? Will it reduce project

effort and developm ent cycle time? and (2) W hat is the optim al num ber of sub­

systems (subteams) that leads to the low est project effort a n d shortest developm ent

cycle time?

As discussed in section 4.2.2, three counteracting factors are critical in deter­

m ining the outcome of a SCS project, namely, how the project is decom posed (i.e.,

the num ber of subsystems), the incurred com m unication overhead due to project

decom position, and the incurred extra rew ork due to interteam problems.

G rouping developers into teams affects the overall com m unication overhead.

Consider the case of grouping N developers into t equal-sized teams of n (i.e., N / t)

m em bers per team. The possible num ber of com m unication links is the sum of the

num ber of interteam communication links plus the num ber of intrateam com m uni­

cation links. The possible num ber of com m unication links am ong t teams is f(f-l)/2 ,

and the num ber of communication links am ong n m em bers w ithin a team is

rc(n-l)/2. Since there are t teams, the total num ber of intrateam comm unication links

is (tn)(n-1)/2 . The interteam and intrateam com m unication overheads increase in

proportion to t2 and tnr, respectively.

Breaking a single large team into m ultiple sm aller team s decreases the am ount

of intrateam communication overhead. However, for a given num ber of developers,

increasing the num ber of concurrent team s will increase the am ount of interteam

com m unication overhead. It is critical to determ ine an optim al num ber of concurrent

subteam s to minimize the overall comm unication overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138
7.4.1 D eterm ining Com m unication Overhead

The overall average time that project staff m em bers spend on com m unicating

w ith other m em bers of the project each day is captured in the overall communication

overhead param eter (show n in m iddle-left of figure 7.11). We classify com m unication

overhead into two categories: com m unications w ithin team s (intrateam communica­

tion overhead) and com m unications across teams (interteam communication overhead).

Com m unications w ithin a team usually are frequent and informal. Com m unications

across team s usually are m ore form al and via meetings a n d / or docum ented agree­

m ents. A w ell-partitioned project usually has a higher level of com m unication traffic

w ith in a team than across teams.

Both the intrateam communication overhead and the interteam communication over­

head param eters are m odeled as a g raph function, as show n in figure 7.12. The

intrateam communication overhead is a function of average team size, w hile the inter­

team communication overhead is m odeled as a function of the num ber of teams. The

general shapes of the two graph functions are based on the assum ption th a t com m u­

nication overhead depends on the num ber of com m unication links ([7], [22]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

number of

Cum Intrateam

Cum Team Size

Cum O' Comm Overhead
average project average size

overatt comm ovemead cum rate
current WF

muK to inteneam comm rad
average intrateam

number of teams

interteam Comm Ovemead

comm ratio

average mterteam comm ovemead

Figure 7.11. Determ ining the overall com m unication overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

0.6

0.5

0.4

0.2

0.07

0.06

0.05

0.04

0.03

0.02

0.01

1 2 3 4 5 6 7 8 9 10 11
Team size |

Number of teams

(a) (b)

Figure 7.12. Intrateam and interteam communication overheads; (a) Intrateam
com m unication overhead; (b) Interteam comm unication overhead.

7.4.2 Interteam Interactions

Breaking a large team into subteam s reduces the comm unications flow, b u t the

risk of problem s caused by isolated concurrent works grows. Some aspect of one

team 's w ork m ay impact w ork being done by another [42]. Teams involved in con­

current developm ent of different subsystem s (e.g., hardw are com ponents and soft­

w are components) m ust have a steady flow of information am ong the groups to

prevent potential integration problem s [21]. As Aoyama notes [19]:

M ultiple teams w orking on the related enhancements m ay d isrup t the system 's

integrity. In requirements specifications, for example, this can cause inconsis­

tent a n d / or incomplete specifications. In design and im plem entation, sim ulta­

neous updates to a single m odule m ay violate the m odules's consistency.

We define an "interference" as an interteam problem that is caused by m ultiple

concurrent developm ent teams and could have been avoided if the project was done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141
by one team. In requirem ents analysis phase, for example, interferences could m ean

conflicting requirements, m issing requirements, or duplicate requirem ents.

A lthough these problems also exist in a one-team Waterfall process, they have differ­

en t m eanings here. W hen die w orkload is assigned to different teams, m issing

requirem ents m ean that no team takes charge of those requirem ents; duplicate

requirem ents means that a t least two teams w ork on the sam e requirem ents; and

conflicting requirements m ean that different teams have different interpretations of

the sam e requirements.

Interferences am ong requirem ents specifications are a t a h igher level than

those encountered during design and implementation. In requirem ents analysis

phase, interferences are intangible and created as specifications are elaborated. With­

ou t ongoing, informal com m unication, sim ultaneous w ork on different com ponents

of a project w ill create chaos rather than progress and will consum e m ore tim e than

the sequential approach [65].

Interteam interferences am plify along two dimensions: the "degree of concur­

rency" dim ension and the "developm ent life cycle" dim ension. Obviously, if there is

only one team, there w ould be no interteam interferences. However, as the num ber

of developm ent teams increases, interteam interferences w ill grow, and w orse yet, in

non-linear manner. The relationship between the num ber of interteam interferences

generated and the num ber of teams is m odeled as the across-team interference amplifi­

cation param eter; its general form, as depicted in figure 7.13 (a), is based on our dis­

cussions w ith Mikio Aoyam a and three other Fujitsu project m anagers [20].

Interteam interferences also grow along the developm ent life cycle dimension.

A n upstream interference amplifies more downstream interferences w hen dow n­

stream activities w ork on the upstream interference. The new ly generated design

interferences, in turn, w ill generate more coding interferences. The longer the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142
interference rem ains undetected, the m ore dow nstream interferences w ill be am pli­

fied. For example, an inconsistent requirem ents specification (i.e., a specification

interference) will am plify one or m ore design interferences. If a requirem ent is asso­

ciated w ith five design units, then one requirem ents interference w ill am plify five

design interferences.

Interference am plification w ith in the developm ent phase (including design

a n d coding) is m odeled as the dev phase interference amplification param eter (defined

in the Interteam Interactions sector). The general shape of the dev phase interference

amplification parameter, as depicted in figure 7.13 (b), is based on the experience of

Fujitsu [20]. In the initial stage of the developm ent phase, a design interference will,

on average, am plify tw o-and-a-half dow nstream interferences (i.e., detailed design

and coding interferences). As the developm ent phase progresses to the end , all inter­

ferences are coding interferences, and therefore will no t am plify m ore interferences

(the value of the dev phase interference amplification param eter approaches 0).

3 .5

3

2 .5

2

.5

1
2 3 4 5 6 7 8 9 10 11 12

num berof concurren t team s

3

.5

2

.5

1

- S . 0 .5

0
0 .5 1

fraction p rojectperceived com pleted
1 .5

(a) (b)

Figure 7.13. Interteam interference amplification; (a) Across team interference
amplification; (b) Developm ent phase interference amplification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

143

In our model, w e assum e that interteam interferences are detected via inter­

team QA and system integration activities. The impact of interteam communication

on interference detection is implicitly included in four param eters: frac reqs int (num ­

ber of interferences com m itted per requirements specification), frac dev int (number

of interferences com m itted per un it developed), dev phase interference amplification

(num ber of coding interferences amplified per design interference), and across team

interference amplification (m ultiplier to interference amplification due to an increase of

concurrent teams). Effective interteam communication will have sm aller values for

the four param eters. The effort spent in interteam QA activities is m odeled as the

daily M P on int detection param eter (i.e., the am ount of daily m anpow er allocated to

interference detection).

Detection of interteam interferences results in respecifying, redesigning, recod­

ing, and retesting. In the Fujitsu's concurrent development project [14], interteam

technical reviews (specification/ design review and code inspection) are conducted

a t the end of each life cycle phase. Interteam technical reviews are one-day work­

shops that involve team leaders reviewing completed work to locate interteam inter­

ferences.

7.4.3 Experim entation Setting

We select three representative patterns of interteam -to-intrateam communica­

tion ratio to cover different situations, from the "light interteam comm unication" sit­

uation (M l) and the "m edium interteam communication" situation (M2) to the "high

interteam com m unication" situation (M3). For example, as show n in figure 7.14, if a

project is partitioned into eight subsystems concurrently being developed by eight

subteam s, M l represents the situation in which the average interteam

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144
comm unication overhead is about 25% (CR - 0.25) of the intrateam com m unication

overhead; M2 represents the situation in which the project has a balanced interteam

and intrateam communication overhead (i.e., CR = 1); M3 represents the situation in

w hich the across-team com m unication traffic is about twice heavier th an the

intrateam communication traffic (i.e., CR = 2).

□ M2 M3

2.2

0£O
o

co
cooeCO(D

n<o

1.8

1.6
1.4

1.2
1

0.8
0.6
0.4

0.2
0%-

-Q-
_ Q _

X L

"C r

5 6 7

Number of teams

Figure 7.14. Interteam-to-intrateam comm unication ratio.

The resolution of interteam problems (i.e., interteam interferences) results in

respecifying, redesigning, recoding, and retesting the w ork that has been done. The

am ount of extra rework incurred by concurrent developm ent definitely has an

im pact on project cost and developm ent cycle time. As w ith the com m unication

ratio, we select three representative pattem s-Fl, F2, and F3-to m odel different

degrees of extra rework (represented as a percentage of the original p lanned work),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

from m odest degree (FI) and m edium degree (F2) of rew ork to high degree of

rew ork (F3). For exam ple, as show n in figure 7.15, if a project is d ivided into eight

subsystem s concurrently being developed by eight subteam s, FI represents the situ­

ation of 25% rework; F2 represents the situation of 50% rew ork; and F3 represents

the situation in w hich rew ork incurred by concurrent developm ent is 75%.

>F1 |F2 F3

80

70
o
CD 60
3
T3
CD 50
a>tz CD
CD O 40

J Z c
o CD

CD o 5 30
N t

'co
O c 20
CD

S ' 10Q_

0

□
TT _Q_

4 5 6 7

Number of teams

Figure 7.15. Project size change due to resolution of
interteam interferences.

To perform a system atic and com prehensive assessm ent of the SCS (synchro­

nous concurrent subsystem s) developm ent approach under different project scenar­

ios, we conduct nine sets of sim ulation runs using the nine "FxM " com binations for

each num ber of concurrent teams, from one to eight. The m eanings of the nine FxM

combinations are explained as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146
(1) M lxF l: Low com m unication ratio combined w ith m odest degree of rew ork

caused by interteam interferences. This is the best-case scenario for an SCS

project. Possible reasons that an SCS project exhibits this type of behavior are

the project is w ell-partitioned or subsystem s are loosely related. U nder these

conditions, the need for interteam com m unication is m inim al.

(2) M lxF2: Low com m unication ratio combined w ith m edium degree of rew ork

due to interteam interferences. Projects m ay no t be perfectly partitioned, and

team s do no t com m unicate enough to resolve and prevent in terteam problems.

(3) MlxF3: Low com m unication ratio combined w ith high degree of rew ork due to

interteam interferences. Projects are no t well-partitioned, subsystem s are

tightly-coupled. Teams do no t communicate enough to coordinate their work.

Therefore, the incurred rew ork is high.

(4) M 2xFl: M edium com m unication ratio combined w ith m odest degree of rew ork

due to interteam interferences. Projects m ay no t be perfectly partitioned, how ­

ever, teams m aintain a certain level of comm unication to coordinate their w ork

and prevent future interteam problem s from occurring. Therefore, the incurred

rew ork is minimal.

(5) M2xF2: M edium com m unication ratio combined w ith m ed ium degree of

rew ork due to interteam interferences. Projects may no t be perfectly parti­

tioned. Teams do com m unicate to coordinate their work. How ever, a certain

level of rew ork to resolve interteam problems is still needed.

(6) M2xF3: M edium com m unication ratio com bined w ith h igh degree of rew ork

due to interteam interferences. Projects are no t w ell-partitioned, and sub­

system s are tightly coupled. Teams do communicate to coordinate their work.

However, the com m unication m ight not be effective. Therefore, the incurred

rew ork is still high.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147
(7) M3xFl: High com m unication ratio combined w ith m odest degree of rew ork

due to interteam interferences. Projects m ay not be perfectly partitioned, how ­

ever, teams m aintain a h igh level of comm unication to coordinate their w ork

and prevent future interteam problems from occurring. Therefore, the incurred

rew ork is minimal. M icrosoft's Daily Build practice is an example of this type

of SCS development.

(8) M3xF2: H igh com m unication ratio combined w ith m edium degree of rew ork

due to interteam interferences. Projects m ay no t be perfectly partitioned. Teams

do frequently com m unicate to coordinate their work. However, the com m uni­

cation may no t be effective, and a certain level of rew ork to resolve interteam

problem s is still needed.

(9) M3xF3: H igh com m unication ratio combined w ith high degree of rew ork due

to interteam interferences. This is the worst-case scenario for the SCS develop­

m ent approach. The project is not well-partitioned, and subsystems are tightly

coupled, requiring intensive communication and inform ation traffic across

subsystem teams.

7.4.4 Sim ulation Results

Figures 7.16 and 7.17 depict the sim ulation data of the BASELINE project

under twenty-four different project settings. All twenty-four sim ulation runs sim u­

late projects w ith M l (i.e., low interteam -to-intrateam comm unication ratio) behav­

ior. Three immediate observations can be derived from the two figures.

First, for a given project setting, there exists an optim al num ber of concurrent

teams that leads to lowest project effort and shortest developm ent cycle time. O ur

results show that, for a 128 KLOC project (w ithout requirem ents change) w ith aver­

age full-time-equivalent software personnel of 24.2 (data derived from COCOMO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148
2.0), the optim al num ber of concurrent teams is four for the M lxF l com bination and

three for the M lxF2 and the MlxF3 combinations. The optim al team size for the

M lxF l, MlxF2, and MlxF3 combination is six (24.2/4), eight (24.2/3), and eight

(24.2/3), respectively.

Second, it is beneficial to organize a project w ork force into sm aller groups. The

savings in project effort and developm ent cycle tim e is m ost significant from one-

team setting to tw o-team settings. For example, the savings in project effort and

developm ent cycle time from one-team setting to the tw o-team M lxF l setting is

16.4% (i.e., (13,329-11,143)/13,329) and 13.4% (i.e., (634-549)/634), respectively. How­

ever, the difference betw een the two-team M lxF l setting and the four-team M lxF l

(i.e., optimal) setting is not significant. The difference for project effort and develop­

m ent cycle time is only 3.1% (i.e., (11,143-10,793)/11,143) and 2.4% (i.e., (549-536)/

549), respectively.

The second observation can be theoretically justified. For a team w ith 24 mem­

bers, the num ber of potential communication links am ong team mem bers is 276 (i.e.,

24x23/2). The num ber of potential communication links for tw o equal-sized teams is

132 (i.e., 2 x 12x11/2) plus one interteam com m unication link. The savings is 143 (i.e.,

276-133). W hen the 24 staff members are grouped into three teams, the num ber of

potential com m unication link drops to 84 plus three interteam comm unication links.

N ow the savings in communication links is only 46 (133-87), which is 32% (i.e., 46 /

143) of the two-team setting.

Third, it is beneficial to adopt the SCS developm ent approach as long as the

incurred extra rew ork is below a certain threshold value. For example, as depicted in

figures 7.16 and 7.17, twenty-two out of tw enty-four project settings have benefited

from the SCS developm ent approach. The two exceptions are the seven-team M lxF3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149
and eight-team M lxF3 settings. These two project settings have a 58.5% and 75.3%

rework.

The threshold value for the incurred extra rew ork u nder the eight-team MlxF3

setting, suggested by CSE-SD, is around 57%. In other w ords, for an eight-team

M lxF3 SCS project setting to be beneficial, the incurred extra rew ork due to inter­

team interferences should not exceed 57%.

The results for the "m edium interteam com m unication" (M2) situation and the

"h igh in terteam communication" (M3) situation are depicted in figures 7.18 to 7.21.

Like the three M l settings, there exists an optim al num ber of concurrent subteam s

that leads to the lowest project effort and the shortest developm ent cycle tim e for the

M2 and M3 settings. The sim ulation results show that, for the BASELINE project

(w ithout requirem ents change) w ith average full-tim e-equivalent software person­

nel of 24.2, the optim al num ber of concurrent subteam s is three for the M2xFl, the

M2xF2, and the M2xF3 settings. The optim al team size for these three settings is

eight (24.2/3). The M3 situation exhibits sim ilar behavior. The optim al num ber of

concurrent subteam s is three for the M 3xFl, M3xF2, and M2xF3 combinations. The

optim al team size for all the three M3 com binations is eight (24.2/3).

The savings in project developm ent cycle time for organizing project staff into

optim al project setting is 15.0% (i.e., (634-539)/634) for the M2 situation and 14.5%

(i.e., (634-542)/634) for the M3 situation. The savings in project effort is m ore signifi­

cant than those of developm ent cycle time. The savings is 18.4% (i.e., (13,329-

10,876)/13,329) for the M2 situation and 17.7% (i.e., (13,329-10,966)/13,329) for the

M3 situation.

Third, it is beneficial to adopt the SCS concurrent developm ent approach as

long as the incurred extra rew ork is below a certain threshold value. In the M2

(m edium interteam communication) situation, it is unwise to a ttem pt a seven-team

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150
concurrent developm ent if the incurred rew ork is above 57%. As show n in figures

7.18 and 7.19, bo th the developm ent cycle time (637 w orking days) and project effort

(13,889 person-days) of the seven-team setting is sim ilar to that of the one-team set­

ting (634 w orking days and 13,329 person-days, respectively). In the M3 (high inter-

team -to-intrateam com m unication ratio) situation, our results suggest not

organizing project staff into m ore than six subteam s if the incurred rew ork is above

47%.

In sum m ary, the SCS concurrent developm ent approach is feasible and benefi­

cial. It helps cu t project effort and developm ent cycle time. U nder sound project con­

ditions (low interteam -to-intrateam com m unication ratio and low incurred extra

rework, i.e., the M lxF l setting), the SCS developm ent approach cuts project effort by

19% and developm ent cycle time by 15.5%. However, there are lim its to the benefits

of the SCS developm ent approach. The benefits of the SCS developm ent approach

are confined by the relative m agnitude of the interteam -to-intrateam comm unication

ratio and the degree of extra rework incurred due to interteam problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Pr
oj

ec
t

ef
fo

rt
(p

er
so

n-
da

ys

151

IM1 x F2

700

675
C/5>%
CO■o
uo5

6506^4

625.S 6$4
I 600

575

•g. 550

525

500

685

637
634

-583-
572 ~wr

589
603~

A_
612

588
568 A

556 ■ 558
I 565

-574-

549 O
-537-

O
-536“

O
-538-

O
543_ 548 554

4 5 6 7
Number of team s

Figure 7.16. Project duration vs. num ber of teams
(low communication ratio M l).

o M1 x F1 ■ M1 x F2 A M1 x F3

15000

14000

13000

12000

11000

10000
1 2 3 4 5 6 7 8 9

Number of teams

14425

A

12095

A, -

11689

O
O

10817

11928

12234

A

12576

A

11423

O
10793

O
10857

O
11798

Figure 7.17. Project effort vs. num ber of teams
(low communication ratio Ml).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

O M2 x F1 I M2 x F2 . M2x F3

oal

725

700

675

650

625

600

575

550

525

500

--- TO-----
▲

▲ 530

1 520 ■
J

555 A' 501

*
575 SSI

▲
A571

5B
■

“ ■ "" "" ■ o
0 ■ ■ o 565
SSI o o S

O "vJ
548 555

2 3 4 5 6 7 8 9

Number of teams

Figure 7.18. Project duration vs. num ber of teams
(m edium comm unication ra tio M2).

O M2 x F1 I M2 x F2 A M2 X F3

16000

15000
C/5>»Oj
£ 14000 -
| 13
o5 i
CL 13000|3;«9--c o fc
® 12000 o
CD

<3- 11000

10000

14948

13889

29 13407

12147
11*11

12397
11882 13340 n ^ 5 ™

11A26<' » “ ■ -------

12998
— * ---- 1-2530

O
11197 O"

O
O 11695

° tX 3Z 2------------

10876 10883 11003
11153

3 4 5 6 7 8
Number of teams

10 11

Figure 7.19. Project effort vs. num ber of teams
(m edium comm unication ratio M2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

OM3xF1 ■ M3 x F2 a M3 x F3

800
775

743
750 - -

■g 725 -
!* 700 • -
^ 675 —

650 ® —

SS2.

0
5 ,

1 625 *o _ 6.4
g 600 —
o- 575 --------
o_

550 --------
525 --------
500 --------

1

643

612
586 586 »59fr

590■ 561
674-

5616 5 1 65a'544"W

2 3 6 7 8 94 5

Number of teams

Figure 7.20. Project duration vs. num ber of teams
(high communication ratio M3).

O M3 x F1 i M3 x F2 M3 x F3

17000

16000

15000

12S. 14000

1 3 0 0 0 U I 2 J

S. 12000

11000

10000

15701

"TJ438"

13?29

113329

- 1355 8 -
I 14173

12824 I 13257

12177 12184
11971 12486

I 11774
I 11516

-o o
11709

1-12027-

11204 ~ 11218
10966 11036

O
.11520-

O 12289
11872

5 6 7

Number of teams

10 11

Figure 7.21. Project effort vs. num ber of teams
(high communication ratio M3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Contributions of the Research

This research has m ade three m ajor contributions. First, we have presented a

classification of different types of concurrent software engineering (CSE) practices,

based on a proposed conceptual Resource-Activity-Work product (RAW) m odel. The

RAW m odel is able to capture different types of concurrency in different levels of

detail. We also have surveyed state-of-the-practice CSE practices and presented them

using the RAW model. The RAW representation allows one to easily recognize differ­

en t types of concurrency that exist in a complex software developm ent process, and,

therefore, predict the benefits and potential risks of the developm ent process.

Second, w e have identified the specific benefits, potential risks, and the

dynam ic cause-effect implications of different types of CSE practices. Based on the

cause-effect analysis, we have developed a system dynamics sim ulation m odel CSE-

SD to assess the im pact of concurrent software engineering on project cost and devel­

opm ent cycle time.

CSE-SD is an economic and effective m anagem ent policy exploration tool for

pre-assessing the benefits and potential risks of reengineering software developm ent

processes. It is useful for process definition, process analysis and process redesign.

The ou tpu t of the CSE-SD model provides a predictive reference behavior for the

new ly reengineered process. The proposed CSE-SD sim ulation m odel easily can be

extended to assess the im pact of other factors.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

155
Third, w e have studied three sets of questions using the CSE-SD model: (1) the

im pact of project restaffing on project cost and developm ent cycle time; (2) the

im pact of the phase overlapping concurrent developm ent approach on project cost an d

developm ent cycle time; and (3) the im pact of the synchronous concurrent subsystems

developm ent approach on project cost and developm ent cycle time. The results of

our study provide strategic information for software project m anagers who attem pt

concurrent softw are product development. The results of our study are sum m arized

in section 8 .2 .

The utility of the CSE-SD model for a particular organization depends on cali­

brating it according to local data. While m odel param eters in CSE-SD are set w ith

reasonable num bers to investigate the im pact of CSE practice in general, the results

using the defaults will not necessarily reflect all environm ents.

8.2 Im portant F in d in gs

Three specific sets of questions have been studied in this thesis: (1) W hat is the

impact of add ing people late in a software project? Will the project be com pleted ear­

lier or be delayed even further as predicted by Brooks' Law? W hen is the best tim e to

add people to a software project, and how m any people should be added? (2) W hat

is the im pact of the phase overlapping concurrent developm ent approach on project

cost and developm ent cycle time? Will phase overlapping reduce project duration

a n d / or cost? W hat is the optimal degree of phase overlapping in terms of project

cost and developm ent cycle time? and (3) W hat is the im pact of the synchronous con­

current subsystems (SCS) development approach on project cost and developm ent

cycle time? Will the SCS developm ent approach reduce project cost and develop­

m ent cycle time? For a given project, w hat is the optim al num ber of subsystem s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156
(subteam s) tha t can lead to the shortest developm ent cycle time and low est cost?

W hat is the im pact of interteam technical review on project duration and cost?

8.2.1 B rooks' Law

We perform ed an in-depth study of Brooks' Law using the CSE-SD m odel. The

results of the study are based on three sets of sim ulation runs w ith different assum p­

tions. First, w e use the same assum ptions as those of Abdel-H am id and M adnick

(AHM) [7]: (1) project tasks can be partitioned, b u t there is no sequential constraint

am ong them; and (2) m anagem ent continuously w ill ad d new people as long as it

senses a shortage in manpower. Under these assum ptions, our results are consistent

w ith those of AHM , namely, adding m ore people to a late project always causes it to

becom e m ore costly bu t does not always cause it to be com pleted later.

Next, w e use a more realistic assum ption by considering sequential constraint.

We found ou t tha t continuously adding people to a late project makes it later and

m ore costly. This confirms Brooks' Law. However, these results are different from

those of AHM 's. Their results indicated that add ing people late in the project (until

two calendar w eeks rem aining to complete the project) will not delay the project.

O ur results show that, w hen sequential constraint is significant, adop ting such an

aggressive m anpow er acquisition policy causes the project to be delayed further.

Finally, w e ad d another realistic assum ption that people are added to a project

only once throughout the entire project life cycle, because it is difficult to obtain fre­

quen t m anpow er addition approvals from u p per m anagem ent. We found out that

there is an optim al time range for add ing people w ithout delaying a project. It

ranges From one-third to halfway into the project developm ent. If software project

m anagers cannot m ake a timely and accurate decision on project restaffing prior to

halfw ay into the project, the project has a h igh probability of being delayed,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

157
especially w hen task sequential constraints are involved. However, add ing people

d u ring the project alw ays causes the project cost to increase.

8.2.2 Im pact o f Phase O verlapping

O ur results show that w hen 90% of the requirem ents changes occur d u ring the

requirem ents analysis phase, the phase overlapping concurrent developm ent

approach reduces both project effort and developm ent cycle time. In other w ords, if

the requirem ents phase is done well and the requirem ents specification is fairly com­

plete and stable, then CSE is very helpful. However, w hen m ost of the requirem ents

changes occur du ring the "product design" phase or later, the im provem ent by CSE

in reducing cycle time is not significant. Furthermore, software project m anagers

have to pay the price of increased project effort w hen attem pting the phase overlap­

ping developm ent approach.

A m ong the nine combinations of "requirem ents change patterns" and "phase

overlapping m odes" we examined, the "ClxR3xD2" com bination has the shortest

project developm ent cycle time and lowest project cost. The "ClxR3xD2" com bina­

tion represents the situation of attem pting aggressive phase overlapping w hen m ost

of the requirem ents changes occur during the "requirem ents analysis" phase.

8.2.3 Im pact of Synchronous Concurrent
Subsystem s

Three im portant findings are observed from our sim ulation data. First, for a

given project setting, there exists an optimal num ber of concurrent teams that leads

to low est project effort and shortest developm ent cycle time. For the specific project

w e stud ied (i.e., 128 KLOC COCOMO 2.0 nominal project), the optim al num ber of

teams is three if the project is well-partitioned and the am ount of rew ork due to

interteam problem s is around 30% to 40%. The optim al team size is eight, w hich is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158
consistent w ith tha t suggested by Graicunias [45]. According to Graicunias, the

upper lim it of effective staff size is about eight [75].

Second, it is beneficial to organize a project w ork force into sm aller groups. The

savings in project effort and developm ent cycle tim e is m ost significant from a one-

team setting to a two-team setting. For example, the savings in project effort and

developm ent cycle time from a one-team setting to the two-team M lxF l setting (i.e.,

the com bination of low interteam-to-intrateam comm unication ratio and low rew ork

percentage) is 16.4% and 13.4%, respectively. However, the difference betw een the

tw o-team M lxF l setting and the four-team M lxF l (i.e., optim al num ber of teams)

setting is no t significant. The difference for project effort and developm ent cycle tim e

is only 3.1% and 2.4%, respectively.

Third, it is beneficial to adopt the SCS concurrent developm ent approach as

long as the incurred extra rew ork is below a certain threshold value. For example, in

the M2 (m edium interteam -to-intrateam comm unication ratio) situation, it is unw ise

to a ttem pt seven-team concurrent developm ent if the incurred rew ork is above 57%.

In the M3 (high interteam-to-intrateam comm unication ratio) situation, our results

suggest no t organizing project staff into more than six concurrent teams if the

incurred rew ork is above 47%.

8.3 Future Work
The proposed CSE-SD model is designed to study the im pact of CSE on project

cost and developm ent cycle time. It is a comprehensive m odel tha t covers the entire

software developm ent process, from requirements analysis to system integration

and test. However, the proposed model still can be extended to assess the im pact of

other factors of interest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159
As discussed in section 4.2.3, in the asynchronous concurrent subsystem s

(ACS) concurrency, each subteam evolves its design a t a different speed , b u t their

w ork m ust be integrated a t the end of the project. Therefore, know ing how to control

the developm ent progress of each subteam , to be sure they complete their share of

w ork on time, becomes an im portant issue. Timebox-based project m anagem ent

helps prevent delay of the project by ensuring that no subsystem is late [54]. The pro­

posed CSE-SD m odel can be extended to assess the im pact of institu ting tim ebox

m anagem ent practice w hen concurrent developm ents are out of sync.

In section 4.2.4, w e identified critical factors in the CFI concurrency, namely,

cross-functional integration, em pow erm ent of decision-making authority, co-loca­

tion of team m embers, dedicated team m em bers, and setting time as a goal. CSE-SD

can be extended to incorporate theses factors and test the following hypotheses:

1. Increasing the num ber of functions represented on the developm ent team

decreases developm ent time. Cycle tim e benefits, however, m ay dim inish , if a

cross-function team becomes too large.

2. (a) Decreasing the num ber of decisions for w hich approval is required ou tside the

project team decreases developm ent time; (b) Increasing the level of senior m an­

agem ent support for the team decreases developm ent time.

3. Setting and m easuring fast cycle time as an explicit project goal decreases devel­

opm ent time.

4. Co-locating team members decreases developm ent time.

5. As the num ber of projects to w hich team m em bers are assigned decreases, devel­

opm ent tim e decreases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

CSE-SD MODEL SPECIFICATION

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161
A.1 The Human Resource Subsystem

The Human Resource subsystem consists of three sectors: Work Force, Staff Pro­

ductive Time, and Staff Productivity. They are responsible for m odeling the project

w ork force, the am ount of time that project staff mem bers actually spend on the

project, and their production rate, respectively.

A.1.1 T he W ork Force Sector

The Work Force sector, as show n in figure A.1, keeps track of the cu rren t num ­

ber of project staff mem bers that are working on the project (current WF). We divides

the available w ork force into two categories, new staff m em bers (New Staff) and

experienced staff mem bers (Exp Staff), mainly for three reasons. First, new staff

m em bers usually are less productive because of their lack of project experience and

know ledge. Second, new staff m em bers usually spend part of their tim e in training

and orientation right after they are brought into the project. Training also consum es

p a rt of the experienced staff m em bers' productive time. The third reason is that new

staff m em bers are prone to com m it more errors than the experienced staff members.

M anagem ent decides on the num ber of engineers to hire (desired new staff)

a n d / or the num ber of staff m em bers to bring from other projects (Desired In Trans

Staff). The hiring and transferring of project staff members take time. The tim e tha t it

takes to hire new staff mem bers and transfer staff members into an d ou t of the

project from w ithin the organization, is modeled as hiring delay, in trans delay, and out

trans delay, respectively.

Once the desired num ber of new work force members is b rough t into the

project, they usually will go through a training/assim ilation period before they

become experienced and productive. The training/ assimilation period is m odeled as

assimilation delay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162

in trans delay Project Staff level

Desired in Trans,

PSL cum rate
frac staff exp project average staff levelWF

staff in

staff out trans rate

out rate

assimilation delay

staff out trans rate

Out Trans

desired change staff out trans rate
out trans delay

twees per exp staff

target WF level
FTE exp staff daily MP per staff

Figure A.1. The W ork Force sector.

A.1.2 The Staff Productive Tim e Sector

The Staff Productive Time sector, as show n in figure A.2, m onitors the staff tim e

resource. It breaks down project staff m em bers' daily time into two m ain categories:

project time (Project Time) and slack time (Slack Time). Project time is the tim e that

staff m em bers spend on project-related activities. It is further classified into three

different categories: productive time (average productive time), training tim e (training

time), and communication time (overall communication overhead).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

163
Productive time includes the time tha t staff m em bers spend on developm ent

activities such as requirem ents specification, design, coding, testing, QA, and

rew ork. The training time param eter keeps track of the time that project staff m em ­

bers spend in training. This includes both the tim e spent by experienced staff m em ­

bers an d new staff members in training-related activities.

C om m unication time (overall communication overhead) captures the am oun t of

tim e th a t staff m em bers spend on com m unicating w ith other m em bers of the project.

As illustrated in figure A.3, w e distinguish betw een com m unication w ith in a team

(intrateam comm overhead) an d across teams (interteam comm overhead). Com m unica­

tion w ith in a team usually is frequent and informal. Com m unication betw een team s

usually is m ore formal and via meetings a n d /o r docum ented agreem ents. A well-

partitioned project usually has higher levels of com m unication traffic w ith in a team

than across teams.

Slack time (Slack Time) is the time that project staff m em bers spend in non­

project events, such as coffee breaks, personal business, and sickness. W hen a project

is perceived to be behind schedule, people tend to w ork harder to bring it back on

schedule. They do that by com pressing their slack tim e a n d / or w orking overtim e

(Overtime) [7],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

164

Exp Staff

tracer's time per new staff

project average daily productive time
New Staff

new staff training tone

Cum Qaify Prodi Time
overtime efficiency effective overtime

OPT changeoverall

Time
Ove ime

overtime deer rate

PT dec rate

'Slack To

overtimwork rate adjustment delay

dec rale

overwoi (duration

MP excess work rate adjustment delay
indicated time

m dcated ov srwork Or

MP gap handedcurrent WF

project time remaining

Figure A.2. The Staff Productive Time sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

number of U
Cum Intrateam Overhead

average intrateam comm overhead

Cum Team Size
intrateam comm factc im rate

je overall comm overhead team sizdcum rateNoname 3
intrateam cor im overhead

Cum Overall Comm Overhead
average/teai project averagejeam size

overall comm overhead cum rate
current WF

overall ration overhead

M mult to interteam comprtSverhead
average intrateam overhead

interteai overhead number of teams

fm interteam Comm Overhead

interteam torntrateam comm ratio

interteam comm cum rate average interteam comm overhead

Figure A.3. Com pute overall comm unication overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166
A.1.3 The Staff Productivity Sector

The Staff Productivity sector, as illustrated in figure A.4, determ ines the aver­

age staff production rate, i.e., num ber of tasks perform ed per u n it of time. O u r focus

is on project factors that likely will change over the life cycle of a softw are project.

In CSE-SD, staffs m em bers' actual production rate (actual staff prod rate) is

d riven by four factors: nom inal staff production rate (nominal staff prod rate), w ork

force mix ratio (frac WF exp), schedule pressure (schedule pressure), and staff m em ­

bers' average exhaustion level (Exhaustion Level). The nom inal staff production rate

is defined as the average production rate of the experienced staff m em bers w orking

under the condition that there is no schedule pressure on them and they are not

exhausted (i.e., Exhaustion Level = 0).

Exhaustion is a condition that typically results w hen a person w orks long

hours across m any days and takes an insufficient am ount of tim e aw ay from the

w orkplace for rest and relaxation. Exhaustion can cause a person to m ake m ore m is­

takes, be less productive, and frequently be irritable tow ard coworkers [82].

In our model, exhaustion level is assum ed to build up because of reduced

slack tim e and w orking overtime due to schedule pressure. As the staff m em bers

continue to w ork overtime a n d / or w ith reduced slack time, their exhaustion level

will increase. However, as their exhaustion level increases, the tim e span they are

w illing to w ork overtime a n d / or reduced slack time (overwork duration) decreases.

A t the tim e the exhaustion level reaches the m axim um threshold exhaustion level,

they are no t willing to continue to overw ork (i.e., overwork duration = 0). It w ill take a

certain period of time w ithout overw ork (exh diminish time) for them to dim inish the

accum ulated exhaustion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

Max Exh ChedcPoint

Overtime

ECP ifec ratemax ECP inc rate

overwork wiffingness

overwork chr
Stack Time

Exhaustion Level

exh diminish timeexh buildu)

exhaustion inc rate exhaustion on prod rate current WF

exhaustion effect on overwork duration
frac staff exp

overworldduration

nominal staff prod rate SP effect on prod rate max MP shortage to be handled

actual sta f prod rate

max overwork durationfrac project pcvd completed
LOC per dev unit

max overwork timeschedule pressure
learning effect on prod rate

Figure A.4. The Staff Productivity sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168
A.2 The Work Flow Subsystem

The Work Flow subsystem m odels the software production activities, ranging

from requirem ents specification to system integration and test. It consists of three

sectors in w hich each sector models the software production process of the three

phases m odeled in CSE-SD, namely requirem ents, development, and system inte­

gration and test.

A.2.1 The Requirements Work Flow Sector

The Requirements Work Flow sector, as illustrated in figure A.5, m odels the

requirem ents phase. Three requirements phase activities are m odeled in the sector:

requirem ents collection, requirements specification, and specification QA. The sta­

tuses of these three activities are m odeled as three stock parameters: Raw Reqs, Reqs

Spec, and QAed Reqs Spec, respectively.

The Razo Reqs param eter keeps track of the am ount of raw requirem ents at any

stage of the requirem ents phase. Despite w hatever time and attention users and

developers give to requirements in the beginning, they often become aw are, as w ork

proceeds, of additional features to add to the initial set of requirements [64]. The rate

a t w hich the additional requirements are incorporated into the project is m odeled as

the reqs change rate param eter (defined in the Project Scope Change sector).

Two sources contribute to the decrease of the Razo Reqs parameter. First,

requirem ents are analyzed, and specification activity moves Razv Reqs into Reqs Spec.

The speed at w hich Razo Reqs flows into Reqs Spec is m odeled as spec rate, which, in

turn, is determ ined by the am ount of daily m anpow er allocated to requirem ents

specification (daily MP to spec) and average staff requirements specification produc­

tivity (spec prod rate).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169
The second source that contributes to the decrease of raw requirem ents is

requirem ents change. Requirements change m ay cause some of the Razo Reqs be

deleted. The pattern of daily am ount of requirem ents deletion due to requirements

change is m odeled as the razo reqs deletion parameter.

The Reqs Spec param eter keeps track of the am ount of current, not-yet-QAed

requirem ents specifications. It increases, a t the rate of spec rate, due to the require­

m ents specification activity. Reqs Spec will decrease for three reasons. First, require­

m ents specification QA activity moves Reqs Spec into QAed Reqs Spec. The speed at

w hich the requirements specification flows into the QAed Reqs Spec stock param eter

is m odeled as spec QA rate. We assume that the requirements specification QA activ­

ity follows the Parkinson's Law [22], that is, "w ork expands to fill the available vol­

ume." The requirements specification QA activity will expand to use up all of the

time assigned (average QA delay). Therefore, spec QA rate is m odeled as Reqs Spec

d ivided by average QA delay. The other reason that causes the requirements specifica­

tion to decrease is deleted requirements specification due to requirements changes

due to the discovery of unplanned requirem ents and the resolution of interteam

interferences.

The QAed Reqs Spec param eter captures the am ount of current QAed require­

m ents specification. It increases, a t the speed of spec QA rate, due to the requirem ents

specification QA activity. Two sources cause QAed Reqs Spec to decrease: QAed

requirem ents specification deleted due to requirem ents changes and QAed require­

m ents specification that flow into the developm ent phase (QAed spec to dev rate).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

170

Cum QAed Reqs Spec

frac daily fcfe to reqs Deleted QAed Spec
OeletedSpec

pcvdreqs completed
Deleted Raw Reqs

QAed
\

frac reqs sis del rate QAed spec deraue to bspec del due tospt ;<f \

QAe
raw reqs det<

Total Raw
Cum Reqs Spec

cum rate QAed reqsdeletion spec

QAed

QAed spec del due to RCraw reqs del due to R£
spec]

QAed I eqsRaw Reqs Reqs Spec
reqs

raw reqs inc due to reqs ml
darfyMPtospec LOCper

raw reqs me due to reqs cftanQe spec i
QAed spec to dev delay

staff prod rate Cum Reas SpecPcvd Project Size
QAed Reqs Spec To Dev Phase

spec prod ratio

Figure A.5. The Requirements Work R ow sector.

A.2.2 The Development Work R ow Sector

As show n in figure A.6, the Development Work Flow sector m odels the develop­

m ent activities, including software developm ent and QA. The Q A ed requirem ents

specification coming from the Requirements Work Floxo sector becom es the w ork to be

perform ed in the developm ent phase. The am ount of w ork to be perform ed (Units

To Be Developed) accum ulates a t the speed of units TBD incoming rate, w hich is

defined as the stun of tw o param eters: QAed spec to dev rate and dev units inc due to int

(developm ent units increases due to interteam interferences).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

171
D evelopm ent phase activities are classified into two general types: develop­

m ent an d QA. The speed a t which software units are developed is m odeled as the

dev rate param eter, which is determ ined by the daily m anpow er allocated to devel­

opm ent ([daily M P to dev), average staff developm ent productivity (dev prod rate), and

degree of concurrency. Degree of concurrency is defined as the fraction of the num ­

ber of softw are units that are ready to be w orked on and the num ber of softw are

units project staff m em bers are able to perform. For example, degree of concurrency

= 0.8 m eans that only 80% of the software units that project staff m em bers are able to

perform are ready for assignment.

The dev QA rate param eter models the number of developed un its th a t are

QAed per day. As w ith the requirements specification QA activity, w e assum e that

the developm ent QA follows Parkinson's Law. That is, no m atter how m any devel­

opm ent units need to be QAed w ithin a predetermined QA duration (dev QA dura­

tion), they alw ays get QAed. The results of the development and developm ent QA

activities are m odeled as the Units Developed parameter and the Units QAed param e­

ter, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

Deleted Deved UnitsDeleted Dev Units

Deleted QAed Deved Units

dev units del due to int
QAed units del due to intnits d<deveddev ur tsdei

deved units del due to int

dev units del oue to RC deved units del due to RC
QAed de t units del rateCum (sv Units

QAed units del due to RCCum Ui ts QAed

dev units cum rate deved unit»cum rate

daily MP to dev QAed units cum rateQAed spec to dev rate QAed un s deletionits deletiondev u nits deletiondeved

Units Developedf Units To Be Developed
icoming rate dev ratfits TBD dev rate

dev units me due to int dev prod ratiolev prod rate daily MP to dev QA
QAed deved jmts to test

dev QA duration
LOC per dqv unit v \ degree of c xi currency

actual staff prod rate Cum Units QAeddev units per reqs

QAed Units Deved To Test
LOC per reqs frac dev pc •d completed

Pcvd Project Size
pcvd total dev units

Figure A.6. The Developm ent Work Flow sector.

A.2.3 T he System Integration and Test Sector

As illustrated in figure A.7, the System Integration and Test sector m odels the

system integration and test activities. Software units concurrentiy developed by dif­

ferent people a n d /o r teams m ust be collected (Units to be Integrated) and integrated

into a single system (Units Integrated). The integration process is a major process that

serves to synchronize the multiple concurrent processes [16]. Once software units are

collected, they are integrated, and then tested. The rate a t w hich units are integrated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

173
and tested depends on the am ount of m anpow er allocated to system integration

(daily MP to integration), system test (daily MP to test), and die average m anpow er to

integrate and test a software un it (testing effort per unit).

The defects that flow into the System Integration and Test phase from the

Development phase are captured in the PreTest Dejects stock param eter. Defects are

detected as the testing activity progresses. The rate a t w hich defects are detected

depends on three factors: testing rate (testing rate), average num ber of defects

detected per un it tested (num. o f defects detected per unit), and test effectiveness (test

effectiveness). Test effectiveness is defined as the fraction of defects th a t are detected

via testing. For example, if a software unit has 10 defects, a test effectiveness of 0.8

means 8 defects will be detected w hen the software un it is tested. Test effectiveness

is a function of daily m anpow er that is allocated to testing (daily M P to test).

Defects found in test m ust be corrected. The rate a t w hich defects are cor­

rected relies on how m uch m anpow er is allocated to correcting defects found in test

(FIT) (daily MP to defects FIT correction) and, on average, how m uch effort is needed

to correct a defect found in the system test (effort to correct a defect FIT). Defects unde­

tected will released to the customer (Defects Released).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174

testing effort
>)mu* to testing effort

SrT degree of concurrency

Cum Unds TestedIntegrated Unto

pretest define rate
Cum Units

Pound in SIT

Detects FIT Corrected
inc rate detects FJ

daily UP to detects FIT <
num or detected per uratpassive dev detects to test

effort to correct a detect FIT

Detects
daily MP to test

Figure A.7. The System Integration and Test sector.

A.3 The D efects and Rew ork Subsystem

The Defects and Rework subsystem m odels the generation, detection, and

rew ork of detected defects. It consists of tw o sectors: Requirements Defects and

Rework, and Development Defects and Rework. Three categories of defects are of con­

cern: requirem ents defects, developm ent defects, and bad fixes, according to the dif­

ferent types of activities m odeled in CSE-SD. One im portan t reason to classify

defects into these three categories is that different types of defects require different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175
costs to fix. Defects originated in upstream phases, such as requirem ents, w ill flow

into dow nstream phases if no t detected. Designs based on defective requirem ents

specifications are defective, no m atter how perfect the design is.

A.3.3 The Requirements Defects and Rework Sector

The Requirements Dejects and Rework sector, as illustrated in figure A.8, m odels

the generation, detection, and correction of requirem ents specification defects.

Requirem ents specifications will result in an unavoidable generation of defects.

Specification defects are generated a t the rate of spec defects generation rate, w hich, in

turn , is determ ined by two param eters: the total num ber of requirem ents specified

daily (spec rate, defined in the Requirements Work Floxo sector) and the average num ­

ber of defects generated per KLOC (reqs dejects per KLOC).

Some of the specification defects are detected (Detected Spec Defects) w hen the

specification is reviewed, and some escape detection (Escaped Spec Defects). Detected

specification defects are then rew orked (Spec Defects Fixed). Bad fixes to the correc­

tion of the detected specification defects (Spec Defects Bad Fixes) are also cap tu red in

the m odel. Defects that are undetected during the requirem ents phase and b ad fixes

to the detected specification defects will flow into the Developm ent phase.

We also keep track of the density of defective requirements specification, both

before (pre QA spec defect density) and after the QA activity (post QA spec defect den­

sity). Post-QA specification defect density is defined as the total num ber of residual

specification defects (the sum of the escaped specification defects and bad fixes)

d iv ided by the cum ulative num ber of QAed requirem ents specifications (Cum QAed

Reqs Spec).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176

Reqs Spec
daily MP to spec QA

QA spec defect density MP needed tafix a spec defect

reqs defects per KLOC

daily MP to spec di correction

efft less

Spec Deft Detected Spec Defects Spec Defects Fixed

spec deft ition rate

spec defect

spec rate spec defects .fixes ratiospec QA rate
LOC per reqs

Spec Defects Fixes

Escaped Spec Defects
spec defects bad fixes rate

post Qa spec (efect density

Curr. QAed Reqs Spec

Figure A.8. The Requirements Defects and Rework sector.

A.3.4 The Developm ent Defects and Rework Sector

The Development Defects and Rexnork sector, as show n in figure A.9, m odels the

generation, detection, and correction of developm ent defects, including design and

coding defects. Developm ent will result in an unavoidable generation of defects.

Developm ent defects are generated at the rate of dev defgen rate, which, in turn, is

controlled by three parameters: (1) the num ber of software units developed per day

{dev rate, as defined in the Development Work Floxv sector); (2) the average num ber of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177
developm ent defects com m itted per KLOC (dev defects committed per KLOC)-, an d (3)

the post-QA specification defect density (post QA spec deject density).

Some of the developm ent defects are detected (Detected Dev Defects) w hen the

developed software units are QAed, and som e escape detection (Cum Dev Dejects

Escaped). Detected developm ent defects are then fixed (Cum Dev Defects Fixed). Bad

fixes to the fixing of developm ent defects are also cap tu red in the m odel (Cum Dev

Defects Bad Fixes). Developm ent defects that are undetected during the developm ent

phase and bad fixes to the developm ent defects will flow into the System Integration

and Test phase. Developm ent defects that escape detection and bad fixes to the

detected developm ent defects will recycle back into the Undetected Active Dev Defects

stock param eter.

Developm ent defects are classified into two categories: active and passive.

Active defects are defects that will amplify more defects. For example, design defects

usually are active, since they w ill amplify coding defects. However, w hen the devel­

opm ent phase progresses to the coding stage, som e of the defects will no t continue

to am plify m ore defects. These passive developm ent defects are m odeled as the Pas­

sive Dev Dejects stock parameter.

We keep track of the density of developm ent defects (dev deject density), w hich

is defined as the ratio of developm ent defects, including both the active and passive

developm ent defects, and the cumulative software units developed (Cum Units

Deved).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

178

normal effort to detect a dev defect
dev def bad fixes'

Cum Dev Defects Bad Fdcbs
def bad fixes rate

pcvd completed daily MP to dev QA

dev defects periCLOC
efforyd'detea a

Detected Dev Defects Cum Dev Fixed

effect of dev def di det effort
act dev def density effc dev def gen dev def fixdev def

Cum Unto Deved
MP a dev defect

datfy MP to dev defect correOon
devtraecrted per KLOCdev defects

active oev defrtd density Cum Dev Defects Escaped
dev QA rate

dev def esc rateper dev
LOC

Defects
dev dp* recycling rate'dev def recydfog rate

post QA spec defect density

St-dev rate passive dev defects unes integration rate
LOCperreos

firac dev pcvd completed

frac daily MP to SITact dev def deuate active dev def n

passive dev def decs ratedev def detect rate

Figure A.9. The Development Defects and Rework sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179
A.4 The Manpower Allocation Subsystem

The Manpower Allocation subsystem allocates p lanned effort to different soft­

w are engineering activities, including requirements specification, developm ent, QA,

defect correction, and system integration and test. It consists of three sectors: Require­

ments Manpower Allocation, Development Manpower Allocation, and SIT Manpower Allo­

cation.

A.4.1 The Requirements Manpower Allocation Sector

The Requirements Manpower Allocation sector, as illustrated in figure A.10, allo­

cates the planned daily m anpow er to different activities in the Requirements phase,

including requirem ents specification (daily MP to spec), specification QA (daily M P to

spec QA), requirem ents specification defects correction (daily MP to spec defect correc­

tion), requirem ents change rework (daily MP to reqs change rework), and requirem ents

interference resolution (daily MP to int resolution).

Daily m anpow er allocated to specification defect correction is determ ined by

two param eters: m anpow er needed to fix a specification defect (MP needed to fix a

spec defect) an d the desired specification defect correction rate (desired spec defect cor­

rection rate). The desired specification defect correction rate is determ ined by (1) con­

sidering the am ount of detected specification defects tha t need to be dealt w ith

(Dejects Spec Detected) and (2) the average delay a specification defect is fixed after it

is detected (spec defect correction delay).

The rem aining requirements phase m anpow er after specification QA and spec­

ification defect correction is devoted to the requirem ents specification activity (daily

MP to spec).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

180

Reqs Phase
frac daily MP to reqs

Reqs Spec current WF
Actual Frac MP On QA average dafly MP per staff

daily MP to i it detection

daily MP 'phase

spec and QA ,MP daily MP factor

Defects

daily MP to reqs change rework average productive time

Defects

correctionto spec

MP needed to fix a spec defect

desired spec defect correction rate

spec defect correction delay

Figure A.10. The Requirements M anpower Allocation sector.

A.4.2 The D evelopm ent M anpow er Allocation Sector

As show n in figure A .ll, the Development Manpoiver Allocation sector has a

structure sim ilar to the Requirements Manpower Allocation sector. Its m ain function is

to allocate developm ent phase m anpow er (daily MP to dev phase) to different devel­

opm ent activities, including development, QA, and developm ent defect correction.

Daily m anpow er allocated to developm ent defect correction (daily M P to dev

defect correction) is determ ined by two param eters: m anpow er needed to fix a devel­

opm ent defect (MP to fix a dev defect) and the desired developm ent defect correction

rate (desired dev defect correction rate). The desired developm ent defect correction rate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

181
is determ ined by considering the am ount of detected developm ent defects th a t need

to be fixed (Detected Dev Dejects) and the average delay until a developm ent defect is

fixed after it is detected (dev defect correction delay).

The rem aining developm ent phase m anpow er resource after allocating to

developm ent QA (daily MP to dev QA) and developm ent defect correction is allo­

cated to the developm ent activity (daily M P to dev).

Actual Frac MP On QA

frac datfy MP to reqs

frac daUy MP to dev*

Units To 8e Di

dev and QA complete

frac dev MP to Si

desired dev

dev defect correction delay

devpcvd

correction rate

Detected Dev Defects

Figure A .ll. The D evelopm ent M anpow er Allocation sector.

A.4.3 T he SIT M anpow er A llocation Sector

The SIT Manpower Allocation sector, as illustrated in figure A.12, has a structure

sim ilar to that of the Requirements Manpower Allocation sector and the Development

Manpower Allocation sector. Its function is to allocate the System Integration and Test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

182
(SIT) phase m anpow er (daily MP to SIT phase) to different activities in the SIT phase,

including integration, system test, and defect correction.

Daily m anpow er allocated to fixing defects found in the SIT phase is deter­

m ined by tw o param eters: m anpow er needed to fix a defect found in test (MP needed

to fix a defect FIT) and the desired defect correction rate (desired defect FIT correction

rate). The desired correction rate of the defects found in system test is determ ined by

considering the am ount of system test-detected defects that need to be corrected

(Dejects Found in SIT) and the average delay until a system test-detected defect is

fixed after it is detected (defects FIT correction delay).

The rem aining system integration and test m anpow er resource after allocating

to system test and defect correction is allocated to the system integration activity

(daily MP to integration).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

183

frac dady MP to reqs

frac daily MP to SIT

protect pcvd completed ic daily MP to dev

frac planned SIT MP on test

lily MP t6 SIX phase

total daily MP

daily MP to ntegraooi

frac units integrated

Defects Found in SIT
frac units tested

daily MP to defects FIT >

pcvd def FIT correction prod

defect F V correction rate
MP needed to fix a defect FIT

defects FIT correction delay

Figure A.12. The SIT M anpower Allocation sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

184
A.5 The M anpower Needed Subsystem

The Manpoxver Needed subsystem determ ines the am ount of effort perceived

still needed to complete the project on time. The am ount of effort perceived still

needed to com plete the project includes the effort perceived still needed to com plete

the activities in all three phases m odeled in CSE-SD, nam ely Requirements, Devel­

opm ent, and System Integration and Test. The effort perceived still needed to com ­

plete the Requirements, Development, and System Integration and Test phase is

determ ined by the Requirements Manpower Needed sector, the Development Manpower

Needed sector, and the SIT Manpower Needed sector, respectively.

A.5.5 The Requirements Manpower N eeded Sector

As show n in figure A.13, the Requirements Manpoxver Needed sector deter­

m ines, a t any stage of the requirem ents phase, the effort perceived still needed to

com plete the requirem ents phase, including the effort needed for requirem ents spec­

ification, specification QA, and specification defect correction.

In the early stage of the requirem ents phase, engineers usually do no t know

exactly how productive they are. Their perception of their productivity sim ply is

their p lanned productivity. However, w hen the project progresses, they begin to

realize how productive they are. Therefore, their perception of their productivity

approaches their actual productivity. Thus, the perception of the effort still needed to

complete the requirem ents phase approaches the effort that is actually needed.

The perception of the m anpow er still needed to complete the requirem ents

phase is m odeled as a weighted average (weight to actual reqs effort needed) of the

planned requirem ents phase effort rem aining (reqs phase effort remaining) and the

actual requirem ents phase effort needed. The actual effort still needed to com plete

the requirem ents phase is the sum of the actual specification effort needed (actual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

185
spec M P needed), the specification QA effort needed (spec QA needed), and the specifi­

cation defect correction effort needed (spec defect correction effort needed).

The actual effort still needed to complete the requirem ents specification activ­

ity is determ ined by dividing the total num ber of requirem ents th a t have been speci­

fied (Cum Spec) and the actual effort that was spent on the specification (Reqs Spec

Effort). The effort that is actually needed to complete the specification activity is

determ ined by m ultiplying the num ber of requirem ents rem aining to be specified

(reqs remaining to be specified) an d the actual specification productivity (actual spec pro­

ductivity).

The effort needed for specification defect correction depends on the amount

of detected specification defects (Detected Spec Defects) an d the m anpow er needed to

fix a specification defect (MP needed to fix a spec defect). The actual effort still needed

for specification QA is m odeled as a fraction (Actual Frac MP on QA) of the actual

specification effort perceived still needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

186

Cum Specspec rati

Pcvd Project Sizespec cum rate

Reqs Spec Effort

reqs remaininn to be specified

Raw Reqs

LOC per reqs Mpn(to fix a spec defect
actual spec MX needed

planned spe : productivity
spec

spec QA MP needed
pcvd reqs phat e effort led Detected Spec Defects

Actual Frac MP On QA

weight to actual effort needed

init planned effort to reqs
e q s phase effortmnedcui

reqs phase effort remaining

frac spec completed

pcvd total dev units
Cum Reqs Phase Effort

Figure A.13. The Requirements M anpow er Needed sector.

A.5.6 T he D evelopm ent M anpow er N eeded Sector

As show n in figure A.14, the Development Manpower Needed sector determ ines,

a t any stage of the developm ent phase, the m anpow er needed to complete the devel­

opm ent phase, including m anpow er needed for software development, develop­

m ent QA, and developm ent defect correction.

The perception of the m anpow er still needed to complete the developm ent

phase is m odeled as a weighted average {weight to actual dev effort needed) of the

p lanned developm ent phase effort rem aining {dev phase effort remaining) and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

187
actual developm ent phase effort needed. The actual effort still needed to complete

the developm ent phase is the sum of the actual developm ent effort needed (actual

dev effort needed), the developm ent QA effort needed (dev QA M P needed), and the

developm ent defect correction effort needed (dev defect correction effort needed).

The actual effort still needed to complete the developm ent activity is deter­

m ined by dividing the total num ber of software units that have been developed

(Cum Units Deved) by the actual effort that w as spent on it (Cum Dev Effort). The

effort that is actually needed to complete the developm ent activity is determ ined by

m ultiplying the num ber of developm ent units rem aining to be developed (i.e., pcvd

total dev units - Cum Units Developed) and the actual developm ent production rate

(actual dev prod rate).

The effort needed for developm ent defect correction depends on the am ount

of detected developm ent defects (Detected Dev Defects) and the m anpow er needed to

fix a developm ent defect (MP to fix a dev defect). The actual effort still needed for

developm ent QA is m odeled as a fraction (Actual Frac MP on QA) of the actual devel­

opm ent effort still needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

188

'aev rate
Cum units Deved

Cum Oev Effort

Detected Dev Defects

Actual Frac MP On QA

effort neededdev defect

planned dev prod

MP to fix a dev defectneededpcvd total dev units

Cum Oev Phase Effort■rat planned effort to dev phase

actual dev effort
dev phase eff> irt remainingdevQAMP

frac dev pcvd completed

Actual Frac MP On QA
effortschedule pressure cunent planned

pcvd total dev units
target AFMPQA

QA MP inc rate

effort to dev phase

Figure A.14. The Developm ent M anpow er N eeded sector.

A.5.7 T he SIT M anpow er N eeded Sector

As show n in figure A.15, the SIT Manpozoer Needed sector determ ines, a t any

stage of the System Integration and Test (SIT) phase, the m anpow er needed to com­

plete the SIT phase, including m anpow er needed for system integration, system test,

and defects correction.

The perception of the m anpow er still needed to com plete the SIT phase is

m odeled as a w eighted average (weight to actual SIT M P needed) of the p lanned SIT

phase effort rem aining (SIT effort remaining) and the actual SIT phase effort needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

189
The actual effort still needed to complete the SIT phase is the sum of the actual inte­

gration m anpow er needed (actual itg MP needed), the actual system test m anpow er

needed (actual system test M P needed), and the defect found in the system test correc­

tion effort needed (defPIT correction effort needed).

The actual effort still needed to com plete the system integration activity is

determ ined by d iv id ing the total num ber of developm ent units that have been inte­

grated (Cum Units Integrated) by the actual effort that w as spen t on it (System Integra­

tion Effort). The effort th a t is actually needed to complete the system integration

activity is determ ined by m ultiplying the num ber of developm ent units rem aining

to be in tegrated (i.e., pcvd total dev units - Cum Units Integrated) and the actual inte­

gration productivity {actual itg prod).

The actual effort still needed to com plete the system test activity is deter­

m ined by d iv id ing the total num ber of integrated units tha t have been tested (Cum

Units Tested) and the actual effort that was spen t on it {System Test Effort). The effort

that is actually needed to complete, the system test activity is determ ined by m ulti­

plying the num ber of integrated units rem aining to be tested (i.e., pcvd total dev units

- Cum Units Tested) and the actual system test productivity {actual system test prod).

The actual effort needed for defects found in system test correction depends

on the am oun t of detected defects {Dejects Found in SIT) and the m anpow er needed

to fix a defect found in system test {effort to correct a defect FIT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

190

Defects Found in SITuruts integration rate

Defects FIT Correction EffortCum Units Integrated
pcvd def FIT correction prod

effort to correct a defect FfT
integrated units cum rate

def FIT ion effort neededactual intg,

actual into MP n<System integration Effort
planned def FIT correct prod Defects FIT Corrected

pcvd SJTe fort led
Cum SIT Effort

rtned tnta prod pcvd to ta dev ul

SIT effort r< ting

current planned SIT effort actual system teshWP need
ed SIT elcurrent plant

.Units Tested
pcvd total dev unitsfrac units tested

init planned effort to SITfrac planned SIT .on tesj
system U

System Test Effortplanned system test prod

Figure A.15. The SIT M anpower Needed sector.

A.6 T he P lann ing Sector

The Planning sector, as show n in figure A.16, is the entry point to the CSE-SD

model. Its m ain functions are to com pute and distribute the estim ated effort, sched­

ule, and w ork force to different phases of the software developm ent life cycle. Before

initiating a software developm ent project, project m anagers m ust estim ate three

things before a project begins: how long it will take, how m uch effort will be

required, and how m any people will be involved [61]. Accurate estim ation of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

191
project effort, schedule, and required w ork force, however, relies on an accurate esti­

m ate of the p roduct size.

To ru n the m odel, the sim ulator m ust provide an initial value for each of the

four param eters, that is, initial estimate of the project size (estimate of project size), in i­

tial estim ate of the required effort (initial effort estimate), estim ated project schedule

(initial duration estimate), and average w ork force (average WF). One also needs to

determ ine how to distribute the planned project effort to different developm ent

phases (pet effort to reqs, pet effort to dev, and pet effort to SIT).

After determ ining the average w ork force (average WF) and the initial percent­

age of experienced w ork force (init pet staff exp), the initial num ber of experienced

w ork force (init exp WF) and initial num ber of new w ork force (init new WF) are

determ ined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

192

BRAK factor estimate of size

per reqsUnplanned Reqs Change

in* planned effort to dev phase

planned effort (0 SIT

e WF

p a effort to SIT
effort to reqs

WF

pet effort to reqs

in* p a staff exp

init staffing factor

Figure A.16. The Planning sector.

A.7 The Project Control Sector

The Project Control sector, as show n in figure A.17, m odels m anagem ent func­

tions that are involved in the m onitoring and control of a software developm ent

project. M onitoring is achieved by m easuring and com paring the perceived software

project's progress w ith the planned software developm ent progress. In our model,

project m onitoring is achieved by com paring the project effort perceived still needed

to com plete the project (pcvd project effort needed) and the rem aining planned project

effort (remaining project effort). Ideally, if the project is on track and proceeds accord­

ing to the schedule, these two m easures should be identical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

193
If the project is perceived to be behind schedule (i.e., the perceived project

effort needed exceeds rem aining project effort), project staff mem bers usually will

w ork harder a n d / or w ork overtime trying to handle the effort gap (MP gap handled)

and bring the project back on track. However, w hen the effort gap exceeds w hat they

are able to handle, the effort gap will be reported (project effort gap reported).

O n the other hand, if the project is perceived to be ahead of schedule (i.e., the

rem aining project effort exceeds the perceived project effort needed to complete the

project), project staff m embers usually will absorb a portion of the effort excess (MP

excess absorbed) by increasing their slack time (i.e., tim e spent on nonproject-related

events). However, w hen the effort excess exceeds w hat they are able to absorb, the

effort excess w ill be reported (project effort gap reported).

Corrective actions are taken w hen the project effort perceived still needed to

complete the project (pcvd project effort needed) deviates significantly from the remain­

ing project effort. Corrective actions that usually are taken by software project m an­

agers are m odeled in CSE-SD:

1. M odify p lanned project effort (Planned Project Effort) and schedule (Planned

Project Duration).

2. Change p lanned w ork force level (target WF).

3. A djust p lanned QA effort, such as design review, code inspection, and testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

194

*C r
MP gap

effortpcvd pcvd

t [jap reported max MP shortage to be handled

project dme remairang

fracMP

WF
project complete

TimeProject
incrate

frac project pcvd i

current WF
removed

wing project effort
Effort

average WFn red)

Planned Project Duration
desiredproject effort adj duration

target project duration

project effort gap reported

remaining project effort

Figure A.17. The Project Control sector.

A.8 T he Project Scope Change Sector

As show n in figure A.18, the Project Scope Change sector m odels the change in

the scope of a software project. Reasons that cause project scope to change include

incomplete and conflicting requirements specifications, requirem ents uncovered due

to project underestim ation, and new requirements. The source tha t causes the origi­

nal project scope to change is represented as the stock param eter Unplanned Reqs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

195
The frac unplanned reqs discovered per day (C l, C2, and C3) param eter is defined

as a function of project progress (modeled as the frac project pcvd completed param e­

ter). The num ber of requirem ents discovered per day is assum ed to decrease as the

project progresses. Once the unplanned requirem ents are discovered, they are incor­

porated into the project plan. However, it usually takes a certain am ount of time

(unplanned reqs inc delay) before they are incorporated into the project plan. The

am ount of cum ulative requirements changes a t any stage of the developm ent life­

cycle is captured in the stock param eter Cum Reqs Change. The reqs change rate param ­

eter regulates the am ount of unplanned requirem ents incorporated into the project

scope per day.

The perception of the project size (Pcvd Project Size) w ill change as unplanned

requirem ents are discovered, existing requirem ents are deleted or modified, a n d /o r

new requirem ents are added. To simplify, we treat the m odification of a requirem ent

as a deletion and an addition of a requirement.

Requirem ents changes cause new raw requirem ents to be added a n d / or exist­

ing requirem ents (raw requirements, specification, or Q A ed specification) to be

deleted. As depicted at the top-right portion of figure A.19, the am ount of raw

requirem ents being deleted each day (raw reqs del due to RC) is determ ined by m ulti­

plying the total num ber of requirements deleted each day (reqs deletion due to RC) by

the fraction of raw requirem ents (frac raw reqs). We assum e tha t the deleted require­

m ents are d istributed uniform ly am ong raw requirem ents, specification, and QAed

specification. For example, if there are six requirem ents to be deleted (reqs deletion

due to RC = 6) and currently there are 10 raw requirem ents, 20 specifications, and 30

QA ed specifications, then one raw requirem ents (frac raw reqs = 1 /6), tw o specifica­

tions (frac spec = 2 /6), and three QAed specifications (frac QAed spec = 3 /6) will be

deleted. The am ount of specification and Q Aed specification being deleted each day

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

196
(spec del due to RC an d QAed spec del due to RC) is determ ined in a sim ilar manner. It is

determ ined by m ultip ly ing the total num ber of requirem ents deleted each day (reqs

deletion due to RC) and the fraction of specification (frac spec) by the fraction of QAed

specification (frac QAed spec), respectively.

As illustrated in the right-bottom portion of figure A.19, the am ount of devel­

opm ent units, units developed, and QAed developm ent un its being deleted each

day (raw dev units del due to RC, deved units del due to RC, and QAed units del due to RC)

is determ ined in a sim ilar manner. It is determ ined by m ultip ly ing the total num ber

of developm ent units deleted each day (dev units deletion due to RC) by the fraction of

raw developm ent units (frac raw dev units), the fraction of developed units (frac deved

units) and the fraction of Q A ed units (frac QAed units), respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

197

nominal rework cost daily MP factor

frac unplanned reqs c scovered per day C2 Change Rework Overhead

frac project p vd completed
daily to re q s p a n g e rework

rework cost ratio

unplanned reqs inc delay
frac unplanned reqs discovered per day C1

frac unplanned reqs discovered per day C3

Cum Reqs ChangeUnplanned Reqs
reqs change je teunplanhed reqs discovery

Discovered Rt

ject scope change p< itag<

pet unptann& reqs discovered PPS ii 'PS dec

reqs di:
Pcvd Project Size

r " a x '

raw reqs inc due to reqs int^cL
Cum Discovered Reqs

frac reqs addition reqs deletion due to intLOC per reqs

Figure A.18. The Project Scope Change sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

198

Figure A.19. Determine the am ount of raw requirements, specifications, QAed
specifications, developm ent units, developed units, and QA ed developm ent
units tha t are to be deleted due to the discovery of unplanned requirem ents
an d the resolution of interteam problems.

A.9 T he In terteam Interactions Sector

As show n in figure A.20, the Interteam Interactions sector m odels the genera­

tion, detection, and resolution of problem s and issues caused by m ultiple concurrent

teams that could have been avoided if done by a single team. M ultiple team s w ork­

ing on related subsystems m ay d isrup t the system integrity. In requirem ents specifi­

cations, for example, this can cause inconsistent or incomplete specifications. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

199
design and im plem entation, sim ultaneous updates to a single m odule m ay violate

that m odule 's consistency [14]. Interteam problems are classified into requirem ents

phase problem s and developm ent phase problems and are m odeled as requirem ents

interferences and developm ent interferences, respectively.

Interferences caused by concurrent developm ent team s are assum ed to be hid­

den (Undetected Reqs Ints and Undetected Dev Ints) until som e types of interteam syn­

chronization a n d /o r coordination activities are perform ed, for exam ple, interteam

requirem ents specification and design reviews. The speed a t w hich the h idden inter­

ferences are detected is assum ed to be dependent on the effort allocated to interteam

issues (daily M P to int detection) and the average effort needed to detect an interfer­

ence (effort to detect a reqs int and effort to detect a dev int).

Detected interferences of the requirem ents specification (Detected Reqs Ints) are

resolved by m odifying or clarifying the requirem ents specification. The rate at w hich

the requirem ents interferences are resolved (reqs int resolution) is decided by how

long the detected interferences are to be resolved (int resolution delay). That is,

reqs int resolution = Detected Reqs In ts /in t resolution delay

The resolution of developm ent interferences was m odeled in a sim ilar way.

U ndetected interferences tend to propagate through succeeding tasks that

build on one another, such as through design and coding tasks built on inconsistent

requirem ent specifications. Two sources contribute to the grow th of undetected

developm ent interferences (Undetected Dev Ints): developm ent interference genera­

tion (dev int gen) and developm ent interference regeneration (dev int regen). Develop­

m ent interference generation depends on how fast the developm ent tasks are done

(dev rate) and the requirem ents interference density (reqs int density), which is

defined as the am ount of undetected requirem ents interferences d ivided by the

num ber of specification tasks com pleted. Similarly, the regeneration of developm ent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

200
interferences depends on the developm ent rate and the developm ent interference

density {dev int density). A higher developm ent interference density will regenerate

m ore interferences.

Units To Be Developed-® 9,
number of team s

across team interference amplification

frac daily MP to ihl detection
sp ec rate

reqs int densityiject pcvd completed

Reqs Ints Resolvedietected Reqs Ints Detected Reqs In)
is int det reqs int resol ut'or

reqs i it gen

ffort to detect a reqs intmult to across earn int amp
fc req s int

Escaped R eqs Ints dev units per reqs jnt rdqlution delayreqs int derail ints fo dev
interteam overhead

dev rate daily Mpr to inrdetecdon total daily MP

frac dev int

UndetectE I Oev Ints
V

Dev Ints ResolvedDetected Dev Ini
dev int del dev int resolution

across team interference amplification

effort to d e te c ts dev intDetected Dev Ints

Int Detection Effortmits integration rate

fiac ints del

int d e t effort cum rate
lev int len

ints density'Iv int density Units To Be Integrated
Cum Units Devejeped

dev phase interferencesamplifi cation
fiac dev int

(elected Dev Intsfrac de' completed
mult to across team int amp

across team interference amplification

Figure A.20.The Interteam Interactions sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B

CSE-SD MODEL EQUATIONS

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

202

Determine Defect Rate
O dev_defects_committed_per_KLOC = system_complexity_effect + nom_dev_defects_per_KLOC*

(WF_mix_effect_on_dev_def_gen/1)*
(S P_effect_on_dev_def_jg en/1)*
(act_dev_def_density_effect_on_dev_def_gen/1)

O nom_component_size = 100
O nom_number_of_components = Pcvd_Project_Size*1000/nom_component_size
0 SP_effect_on_dev_def_gen = GRAPH(schedu!e_pressure)

(-4.00, 0.9), (-2.00, 0.94), (0.00,1.00), (2.00,1.05), (4.00,1.14), (6.00,124), (8.00,1.36), (10.0,1.50)
DOCUMENT:
Adapted from the "Multiplier to Error Generation Due to Schedule Pressure" parameter [7]

0 system_complexity_effect = GRAPH(average_component_size / nom_component_size)
(0.1, 3.50), (0.3,1.77), (0.5,1.00), (0.7,0.6), (0.9, 0.75), (1.10. 0.95), (1.30,1.10), (1.50,1.30). (1.70.
1.60), (1.90, 1.90), (2.10,220)

0 WF_mix_effect_on_dev_defjgen = GRAPH(frac_staff_exp)
(0.00,2.00), (0.2,1.80), (0.4,1.60), (0.6,1.40), (0.8,120), (1.00,1.00)
DOCUMENT:
Adapted from the "Multiplier to Error Generation Due to Workforce Mix" parameter [7]

Determine Needed Workforce
O current_time = TIME * time_scaling_factor
O new_planned_WF = planned WF 20*staffing plan stability + target_WF*(1-staffing_plan_stability)
O target_WF_level = (WF_safety_factor*new_planned_WF)*(1 -WF_stability) + current_WF*WF_stability
O time_scaling_factor = 633/682
O WF_safety_factor = 1
0 planned_WF_0 = GRAPH(current_time)

(0.00,6.50), (50.0,7.50), (100,10.0), (150,14.0), (200,24.0), (250,31.0), (300, 33.0), (350, 32.5),
(400, 31.0), (450,29.5), (500, 28.0), (550,26.0), (600, 25.0), (650, 24.0)
DOCUMENT:
The planned work force distribution (BRAK = 0%)
Calibrated to produce similar work force distribution as that of COCOMO 2.0 (BRAK = 0%)

0 planned_WF_10 = GRAPH(current_time)
(0.00, 6.50), (50.0,8.00), (100,10.0), (150,15.0), (200,24.0), (250,30.0), (300, 37.0), (350, 38.0),
(400, 33.0), (450, 30.0), (500, 27.0), (550,26.0), (600, 26.0), (650, 25.0)
DOCUMENT:
The planned work force distribution (BRAK = 10%)
Calibrated to produce similar work force distribution as that of COCOMO 2.0 (BRAK = 10%)

planned_WF_20 = GRAPH(current_time)
(0.00, 6.50), (50.0,8.00), (100,11.0), (150,16.0), (200,28.0), (250,36.0), (300, 40.0), (350, 37.0),
(400, 33.0), (450, 30.0), (500, 28.0), (550,26.0), (600, 24.0), (650, 24.0)
DOCUMENT:
The planned workforce distribution (BRAK = 20%)
Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 20%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

203
0 planned_WF_25 = GRAPH(current_time)

(0.00,6.50), (50.0,7.00), (100, 9.00), (150,20.0), (200,30.0), (250,40.0), (300, 41.0), (350, 38.0),
(400,33.0), (450,29.0), (500,26.0), (550,25.0), (600,24.0), (650,24.0)
DOCUMENT:
The planned workforce distribution (BRAK = 25%)
Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 25%)

0 planned_WF_30 = GRAPH(current_time)
(0.00, 6.50), (50.0,7.00), (100, 9.00), (150, 20.0), (200,30.0), (250, 40.0). (300, 41.0). (350, 39.0),
(400, 35.0), (450, 30.0), (500, 26.0), (550,25.0), (600, 24.0), (650,24.0)
DOCUMENT:
The planned workforce distribution (BRAK = 30%)
Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 30%)

0 planned_WF_40 = GRAPH(current_time)
(0.00, 6.50), (50.0,7.50). (100, 10.0), (150,19.0), (200,30.0), (250, 36.0), (300, 40.0), (350,42.0),
(400, 41.0), (450, 38.0), (500, 33.0), (550,29.0), (600,27.0), (650, 26.0)
DOCUMENT:
The planned workforce distribution (BRAK = 40%)
Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 40%)

0 staffing_plan_stability = GRAPH(time_scaling_factor * project_time_remaining / WF_production_delay)
(0.00, 0.00), (0.5, 0.048), (1.00, 0.138), (1.50,0.312), (2.00,0^582), (2.50, 0.75), (3.00, 0.87), (3.50,
0.972), (4.00,0.996), (4.50,1.00), (5.00,1.00)

0 WF_stability = GRAPH(project_time_remaining / WF_production_delay)
(0.00,1.00), (0.3,1.00), (0.6, 0.9), (0.9,0.6), (1.20, 0.126), (1.50,0.018), (1.80, 0.00)
DOCUMENT:
Adapted from the "Willingness to Change Work Force Level" (WCWF1) parameter [7]

Development Defects and Rework
□ Cum_Dev_Defects_Bad_Fixes(t) = Cum_Dev_Defects_Bad Fixes(t - dt) + (dev_def_bad_fixes_rate) *

dt
INIT Cum_Dev_Defects_Bad_Fixes = 0
INFLOWS:

dev_def_bad_fixes_rate = dev_def_fix_rate * dev_def_bad_fixes_ratio
□ Cum_Dev_Defects_Escaped(t) = Cum_Dev_Defects_Escaped(t - dt) + (dev_def_esc_rate) * dt

INIT Cum_Dev_Defects_Escaped = 0
INFLOWS:

dev_def_esc_rate = dev_QA_rate*(LOC_per_dev_unit/1000)*dev_defect_density -
dev_def_detect_rate

□ Cum_Dev_Defects_Fixed(t) = Cum_Dev_Defects_Fixed(t - dt) + (dev_def_f?x_rate) * dt
INIT Cum_Dev_Defects_Fixed = 0
INFLOWS:

^ dev_def_fix_rate = daily_MP_to_dev_defect_correction I (MP_to_fix_a_dev_defect+0.000001)
DOCUMENT: tasks reviewed/day

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

204
□ Detected_Dev_Defects(t) = Detected_Dev_Defects(t - dt) + (dev_def_detect_rate - dev_def_fbc_rate) *

dt
INIT Detected_Dev_Defects = 0
INFLOWS:

^ dev_def_detect_rate = dai!y_MP_to_dev_QA / (effort_to_detect_a_dev_defect/1)
OUTFLOWS:

^ dev_def_f«_rate = daily_MP_to_dev_defect_correction / (MP_to_Fix_a_dev_defect+0.000001)
DOCUMENT: tasks reviewed/day

□ Passive_Dev_Defects(t) = Passive_Dev_Defects(t - dt) + (active_dev_def_retiring_rate -
passive_dev_defects_toJest - passive_dev_def_det_rate) * dt
INIT Passive_Dev_Defeds = 0
INFLOWS:

active_dev_def_retiring_rate =
Undected_Active_Dev_Defects*active_dev_def_retirement_fractioa +
dev_def_recycling_rate *(1 -firac_active_defects)

OUTFLOWS:
^ passive_dev_defects_to_test = IF (frac_daily_MP_to_SIT>0)

THEN (unitsJntegration_rate*LOC_per_dev unit/1000) *23
ELSE 0
DOCUMENT: 27 defects/unit integrated
passive_dev_def_det_rate = dev_def_detect_rate * (1-frac_active_defects)

□ Undected_Active_Dev_Defects(t) = Undected_Active_Dev_Defects(t - dt) + (dev_def_gen_rate +
active_dev_def_recycling_rate - dev_def_esc_rate - active_dev_def_retiring_rate -
act_dev_def_det_rate) * dt
INIT Undected_Active_Dev_Defects = 0
INFLOWS:

^ dev_def_gen_rate = (1-post_QA_spec_defect_density)*(dev_rate*LOC_per_dev_unit/1000)*
dev_defects_committed_per_KLOC +

0*(post QA_spec defect density*dev rate*LOC_per reqs/1000)*dev_defects_committed_per
_KLOC~

^ active_dev_def_recycling_rate = dev_def_recycling_rate*frac_active_defects
OUTFLOWSr

^ dev_def_esc_rate = dev_QA_rate*(LOCj3er_dev_unit/1000)*dev_defect_density -
dev_def_detect_rate
active_dev_def_retiring_rate =
Undected_Active_Dev_Defects*active_dev_def_retirement_fraction +
dev_def_recycling_rate *(1 -frac_active_defects)

^ act_dev_def_det_rate = dev_def_detect_rate * firac_active_defects
O active_dev_defect_density = Undected_Active_Dev_Defects/

(Cum_Units_Deved*LOC_per_dev_unit/1000+0.00001)
0 dev_defect_density = ((Undected_Active_Dev_Defects+Passive_Dev_Defects)) /

(Cum_Units_Deved*LOC_per_dev_unit/1000+0.00001)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

205
O dev_def_bad_fixes_ratio = 0.075

DOCUMENT:
Development (design and coding) defects bad fixes ratio
Set to 0.075 [Jones 91]

O dev_def_recycling_rate = dev_def_esc_rate + dev_def_bad_fixes_rate
O effort_to_detect_a_dev_defect = nominal_effort_to_detect_a_dev_defect *

effectjrf_devjief_density_on_det_effort
0 active_dev_def_retirement_fraction = GRAPH(frac_dev_pcvd_completed)

(0.00,0.00). (0.1.0.00). (0.2,0.00), (0.3,0.00), (0.4,0.01), (0.5, 0.02), (0.6, 0.03), (0.7,0.04), (0.8, 0.1;
(0.9, 0.3), (1,1.00)

DOCUMENT:
Adapted from the "Active Error Retirement Rate" parameter [7]

O act dev_def_density_effect_on_dev_def_gen = GRAPH(SMTH1(active_dev_defect_density, 40))
(0.00,1.00), (10.0,1.10), (20.0,1.20), (30.0,1.33), (40.0,1.45), (50.0,1.60), (60.0,2.00), (70.0,2.50),
(80.0,3.25), (90.0,4.35), (100,6.00)
DOCUMENT:
The delay before one defect amplifies additional defects
The average delay is set at two months (40 working days) [7]

0 effect_of_dev_def_density_on_det_effort = GRAPH(dev_defect_density)
(0.00, 50.0), (1.00~36.0), (2.00,26.0), (3.00,17.5), (4.00,10.0), (5.00,4.00). (6.00, 1.75), (7.00,1.20),
(8.00,1.00), (9.00,1.00), (10.0,1.00)

0 frac active_defects = GRAPH(frac_dev_pcvd_completed)
(0.00,1.00), (0.1,1.00), (0.2,1.00), (0.3,1.00), (0.4,0.95), (0.5,0.85), (0.6, 0.5), (0.7, 0.2), (0.8, 0.075’
(0.9, 0.00), (1,0.00)
DOCUMENT:
The percentage of active defects is defined as a graph function of percent of development completed
Adapted from the "Percent Active Errors" parameter [7]

C nominal_effort_to_detect_a_dev_defect = GRAPH(frac_dev_pcvd_completed)
(0.00, 0.4), (0.1, 0.4), (0.2, 0.39)7(0.3, 0.375), (0.4, 0.35), (0.5, 0.3), (0.6, 0.25), (0.7, 0.225), (0.8, 0.21;
(0.9, 0.2), (1, 0.2)

DOCUMENT:
Average QA effort needed to detect a development (including design and coding) defect
Adapted from the "Nominal QA Effort Needed to Detect an Error" parameter [7]

0 nom dev_defects_per_KLOC = GRAPH(frac_dev_pcvd_completed)
(O.ool 25.0), (0.2,23.9), (0.4,21.6), (0.6,15.9), (0.8,13.6), (1.00,12.5)
DOCUMENT:
Nominal development (design and coding) defects committed per KLOC
Adapted from the "Nominal Number of Errors Committed per KDSI" parameter [7]

Development Manpower Allocation
O daily_MP_to_dev = IF(Units_To_Be_Developed<0.1)

THEN0
ELSE
MAX(daily_MP_to_dev_phase-daily_MP_to_dev_QA-daily_MP_to_dev_defect_correction,0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

206
O daily_MP_to_dev_defect_correction = IF (dev_and_QA_complete=1)

THEN daily_MP_to_dev_phase
ELSE IF(Units_T o_Be_Developed<0.1)
THEN daily_MP_to_dev_phase - daily_MP_to_dev_QA
ELSE MIN(MP_to_fix_a_dev_defect*desiredjdev_defect_correction_rate,
daily_MPJo_dev_phase-daily_MP_to_dev_QA)

O daiiy_MP_to_dev_phase = IF(firacjlev_pcvd_completed=1)
THEN 0
ELSE
total_daily_MP * frac_daily_MP_to_dev

O daiiy_MP_to_dev_QA = daily_MP_to_dev_phase*Actual_Frac_MP_On_QA
O desired_dev_defect_correction_rate = Detected_Dev_Defects / dev_defect_correction_delay
O dev_and_QA_complete = IF (Units_To_Be_Developed<1 AND Units_Developed<1)

THEN 1
ELSEO

O dev_defect_correction_delay = 15
DOCUMENT:
Set to 15 working days
Similar to the "Desired Rework Delay" parameter [7]

O frac_daiiy_MP_to_dev = (1-frac_daily_MP_to_reqs) * (1-frac_dev_MP_to_SIT)
O MP_to_fix_a_dev_defect = daily_MP_factor*nominal_effort_to_fix_a_dev_defect
0 frac_dev_MP to_SIT = GRAPH(frac_dev_pcvd_completed)

(0.5, 0.00), (0755, 0.00), (0.6, 0.00), (0.65, 0.00), (0.7, 0.00), (0.75,0.00), (0.8, 0.00), (0.85, 0.00), (0.9,
0.00), (0.95,0.00), (1.00,1.00)
DOCUMENT:
Determined by project managers to simulate different manpower allocation policy

0 nominal_effort_to_fix_a_dev_defect = GRAPH(frac_dev_pcvd_completed)
(0.00,0.6), (0.2,0.575), (0.4,0.5), (0.6, 0.4), (0.8,0.325), (1.00, 0.3)
DOCUMENT:
Nominal defect correction effort
Adapted from the "Nominal Rework Effort Needed per Error” parameter (7]

Development Manpower Needed
1 I Actual_Frac_MP_On_QA(t) = Actual_Frac_MP_On_QA(t - dt) + (QA_MP_iric_rate) * dt

INIT Actual_Frac~MP_On_QA = 0.1
INFLOWS:

QA_MP_inc_rate = 0* (target_AFMPQA-Actual_Frac_MP_On_QA)/1
I I Cum_Units_Deved(t) = Cum_Units_Deved(t - dt) + (sw_unit_developing_rate) * dt

INIT Cum_Units_Deved = 0
INFLOWS:

sw_unit_developing_rate = devjate
O actual_dev_effort_needed = (pcvd_total_dev_units-Cum_U nits_Developed) I

(actual_dev_prod_rate+0.000001)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

207
O actual_dev_prod_rate = IF(Cum_Dev_Effort>0)

THEN Cum_Units_Deved/(Cum_Dev_Effort+0.000001)
ELSE planned_dev_prod_rate

O currentj3lanned_dev_phase_effort = init_planned_effort_to_dev_phase *
(pcvd_total_dev_units/INIT(pcvd_tota!_dev_units))

O dev_defect_correction_effort_needed = Detected_Dev_Defects * MP_to_fbc_a_dev_defect
O dev_phase_effort_remaining = MAX(0, current_planned_dev_phase_effort - Cum_Dev_Phase_Effort)

O dev_QA_MP_needed = (actual_dev_effort_needed/(1-Actual_Frac_MP_On_QA)) *
Actual_Frac_MP_On_QA

O pcvd_dev_phase_effort_needed = weight_to_actual_dev_effort_needed*(actual_dev_effort_needed+
dev_defect_correction_effort_needed + dev_QA_MP_needed) +
(1-weight_to_actual_dev_effort_needed)*dev_phase_effort_remaining

O planned_dev_prod_rate = pcvd_total_dev_units /
(initplanned effort to dev_phase*(1-Actual Frac MP On QA))
DOCUMENT:
The planned development production rate
Perceived total number of development units divided by the planned development effort

0 target_AFMPQA = GRAPH(schedule_pressure)
(0.00.0.15), (1.00. 0.15), (2.00, 0.15), (3.00,0.15), (4.00,0.15), (5.00,0.145), (6.00, 0.131), (7.00,
0.102), (8.00, 0.071), (9.00, 0.055), (10.0,0.05)
DOCUMENT:
The effect of schedule pressure on QA manpower allocation
Adapted from the "Planned Fraction of Manpower for QA" parameter [7]

O weight_to_actual_dev_effort_needed = GRAPH(frac_dev_pcvd_completed)
(0.00,0.00), (0.1,0.01), (0.2,0.05), (0.3,0.174), (0.4, 0.432), (0.5,0.714), (0.6, 0.858), (0.7,0.936),
(0.8, 0.984), (0.9,0.996), (1,1.00)
DOCUMENT:
Adapted from the "Multiplier to Productivity Weight Due to Resource Expenditures" and the
"Multiplier to Productivity Weight Due to Development" parameters (7]

Development Work Flow
□ Cum_Dev_Units(t) = Cum_Dev_Units(t - dt) + (dev_units_cum_rate - dev_units_del_rate) * dt

INIT Cum_DevJJnits = 0
INFLOWS:

*§> dev_units_cum_rate = units_TBD_incoming_rate
OUTFLOWS:

^ dev_units_del_rate = raw_dev_units_del_due_to_RC + dev_units_del_due_to_int
□ Cum_Units_Developed(t) = Cum_Units_Developed(t - dt) + (deved_units_cum_rate -

deved_units_del_rate) * dt
INIT Cum_Units_Developed = 0
INFLOWS:

deved_units_cum_rate = dev_rate
OUTFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

208
f t deved_units_del_rate = deved_units_del_due_to_RC + deved_units_del_due_to_int

□ Cum_Units_QAed(t) = Cum_Units_QAed(t - dt) + (QAed_units_cum_rate - QAed_dev_units_del_rate)
*dt
INIT Cum_Units_QAed = 0
INFLOWS:

f t QAed_units_cum_rate = dev_QA_rate
OUTFLOWS:

f t QAed_dev_units_del_rate = QAed_units_del_due_to_RC + QAed_units_del_due_toJnt
□ Deleted_Deved_Units(t) = Deleted_Deved_Units(t - dt) + (deved_units_del_rate) * dt

INIT Deleted_Deved_Units = 0
INFLOWS:

f t deved_units_del_rate = deved_units_del_due_to_RC + deved_units_del_due_to_int
□ Deleted_Dev_Units(t) = Deleted_Dev_Units(t- dt) + (dev_units_del_rate) * dt

INIT Deleted_Dev_Units = 0
INFLOWS:

f t dev_units_del_rate = raw_dev_units_del_due_to_RC + dev_units_del_due_toJnt
□ Deleted_QAed_Deved_Units(t) = Deleted_QAed_Deved_Units(t - dt) + (QAed_dev_units_del_rate) * d

INIT Deleted_QAed_Deved_Units = 0
INFLOWS:

f t QAed_dev_units_del_rate = QAed_units_del_due_to_RC + QAed_units_del_due_toJnt
□ QAed_Units_Deved_To_Test(t) = QAed_Units_Deved_To T est(t - dt) + (QAed deved_units_to test)*

dt
INIT QAed_Units_Deved_To_Test = 0
INFLOWS:

f t QAed_deved_units_to_test = dev_QA_rate
□ Units_Developed(t) = Units_Developed(t - dt) + (dev_rate - dev_QA_rate - deved_units_deletion) * dt

INIT Units_Developed = 0
INFLOWS:

f t dev_rate = daily_MP_to dev * dev_prod_ratio * dev_prod_rate*degree_of_concurrency * DT
DOCUMENT:
Development rate (development units worked per day) is determined by three parameters: daily
manpower allocated to development, development production ratio, and sequential constraint
Sequential constraint (defined as degree of concurrency)

OUTFLOWS:
f t dev_QA_rate = (Units_Developed/dev_QA_duration)*

(daily_MP_to dev_QA/(daily_MP to dev_QA+0.00001))
DOCUMENT:"
Number of development units that are quality assured per day

f t deved_units_deletion = deved_units_del_due_to_RC + deved_units_del_due_to_int
□ Units_QAed(t) = Units_QAed(t - dt) + (dev_QA_rate - QAed_deved_units_to_test -

QAed_units_deletion) * dt
INIT Units_QAed = 0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^ dev_QA_rate = (Units_Developed/dev_QA_duration)*
(daiiy_MP_to_dev_QA/(daily_MP_to_dev_QA+0.00001))
DOCUMENT:
Number of development units that are quality assured per day

OUTFLOWS:
^ QAed_deved_units_to_test = dev_QA_rate

QAed_units_deletion = QAed_units_del_due_to_RC + QAed_units_del_due_to_int
□ Units_To_Be_Developed(t) = Units_To_Be_Developed(t - dt) + (units_TBD_incoming_rate - dev_rate -

dev_units_deletion) * dt
INIT Units_To_Be_Developed = 0
INFLOWS:

units_TBD_incoming_rate = QAed_spec_to_dev_rate*dev_units_per_reqs +
dev_unte_inc_due_to_int

OUTFLOWS:
^ dev_rate = daily_MP_to_dev * dev_prod_ratio * dev_prod_rate*degree_of_concurrency * DT

DOCUMENT:
Development rate (development units worked per day) is determined by three parameters: daily
manpower allocated to development, development production ratio, and sequential constraint
Sequential constraint (defined as degree of concurrency)

‘f ? dev_units_deletion = raw_dev_units_del_due_to_RC + dev_units_del_due_to_int
O dev_prod_rate = actual_staff_prod_rate I LOC_per_dev_unit

DOCUMENT:
Development units worked per day

O dev_prod_ratio = 1
dev_QA_duration = 10
DOCUMENT:
Set to 10 working days [7]

O dev_units_per_reqs = LOC_per_reqs/LOC_per_dev_unit
O frac_dev_pcvd_completed = Cum_Units_QAed / pcvd_total_dev_units

LOC_per_dev_unit = 60
DOCUMENT:
A development unit is set to 60 lines of source code [7]

O pcvd_total_dev_units = (Pcvd_Project_Size*1 OOOyLOC_per_dev_unit
0 degree_of_concurrency = GRAPH(frac_dev_pcvd_completed)

(0.00,1.00), (0.1,1.00), (0.2,1.00), (0.3, 0.7), (0.4, 0.7), (0.5, 0.7), (0.6, 0.7), (0.7, 0.5), (0.8, 0.5), (0.9,
0.5), (1,0.5)
DOCUMENT:
Degree of concurrency (defined as the ratio of the number of development units ready for assignment
and the number of development units that staff members are able to perform (i.e., sequential constrain

The value is determined project managers to simulate different degrees of sequential constraints

Fraction Project Completed

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O frac_project_pcvd_completed = frac_spec_pcvd_completed*PC_weight_to_reqs +
frac_dev_pcvd_completed*PC_weight_to_dev +
frac_units_tested*PC_weight_tp_SIT

O PC_weight_to_dev = 0.75
O PC_weight_to_reqs = 0.25
O PC_weight_to_SIT = 0
O pro]ect_complete = IF(frac_units_tested*100>98 AND defects_removed=1)

THEN PAUSE
ELSE 0

Interteam Interactions
□ Detected_Dev_lnts(t) = Detected_Dev_lnts(t - dt) + (dev_int_det - dev_int_resolution) * dt

INIT Detected_Dev_lnts = 0
INFLOWS:

c% > dev_int_det= IF(unitsJntegration_rate>0.1)
THEN ints_density * unrts_integration_rate
ELSE daily_MP_to_int_detection/ (effort_to_detect_a_dev_int*1)

OUTFLOWS:
dev_int_resolution = Detected_Dev_lnts/int_resolution_delay

□ Detected_Reqs_lnts(t) = Detected_Reqs_lnts(t - dt) + (reqs_int_det - reqs_int_resolution) * dt
INIT Detected_Reqs_lnts = 0
INFLOWS:

reqs_int_det = daily_MP_to_int_detection / (effort_to_detect_a_reqs_int*1)
OUTFLOWS:

=S ’ reqs_int_resolution = Detected_Reqs_lnts/int_resolution_delay
□ Dev_lnts_Resolved(t) = Dev_lnts_Resolved(t - dt) + (dev_int_resolution) * dt

INIT Dev_lnts_Resolved = 0
INFLOWS:

^ dev_int_resolution = Detected_Dev_!nts/int_resolution_delay
□ Escaped_Reqs_lnts(t) = Escaped_Reqs_lnts(t- dt) + (reqs_ints_to_dev) * dt

INIT Escaped_Reqs_lnts = 0
INFLOWS:

reqs_ints_to_dev = (dev_rate/dev_units_per_reqs) * reqs_int_density
□ lnt_Detection_Effort(t) = lnt_Detection_Effort(t - dt) + (int_det_effort_cum_rate) * dt

INIT lnt_Detection_Effort = 0
INFLOWS:

int_det_effort_cum_rate = daily_MP_to_int_detection
I I Reqs_lnts_Resolved(t) = Reqs_lnts_Resolved(t - dt) + (reqs_int_resolution) * dt

INIT Reqs_lnts_Resolved = 0
INFLOWS:

“5? reqs_int_resolution = Detected_Reqs_lnts/int_resolution_delay
□ Undetected_Dev_lnts(t) = Undetected_Dev_lnts(t - dt) + (dev_int_regen + ints_from_reqs -

dev_int_det) * dt
INIT Undetected_Dev_lnts = 0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^ dev_int_regen = muit_to_across_teamjnt_amp*across_teamjnterference_amplification *
(frac_devjnt*dev_rate*devj>hase_interference_amplification*DELAY(devJnt_density,40))
ints_from_reqs = mult_to_across_team_int_amp * across_team_interference_amplification *
((1-reqs_int_density)*dev_rate*frac_devjnt + reqs_int_density*dev_rate)

OUTFLOWS:
^ devjnt_det = IF(unitsJntegration_rate>0.1)

THEN ints_density* units_integration_rate
ELSE daily_MP_to_int_detection/ (effortJto_detect_a_dev_int*1)

□ Undetected_Reqs_lnts(t) = Undetected_Reqs_lnts(t - dt) + (reqs_int_gen - reqs_int_det -
reqsjnts Jo_dev) * dt
INIT Undetected_Reqs_lnts = 0
INFLOWS:

reqs_jnt_gen = IF(frac_projectjxs/d_completed>0.5)
THENO
ELSE spec_rate*frac_reqsJnt*across_team_interference_amplification *
mult_to_across_teamJnt_amp

OUTFLOWS:
^ reqs_int_det = daiiy_MP_toJnt_detection / (effort_to_detect_a_reqs_int*1)
^ reqsJnts_to_dev = (dev_rate/dev_units_per_reqs) * reqs_int_density

O daily_MP_to_int_detection = total_daily_MP * frac_daily_MP_toJnt_detection
O dev_int_density = Undetected_DevJnts/(Cum_Units_Developed*(1-fracJnts_detected)+0.Q0001)
O frac_ints_detected = Detected_Dev_lnts I (Detected_Dev_lnts+Undetected_Dev_lnts+0.000001)
O ints_density = Undetected_Dev_lnts I (Units_To_Be_lntegrated+0.00001)
0 int_resolution_deiay = 5

DOCUMENT:
Interteam interferences resolution delay
Set to 5 working days based on Fujitsu's experience

O mult_to across_team_int_amp = 0.573
DOCUMENT:
The values are set to model different percentages of rework incurred by multiple-team concurrent
development
More detailed explanations of F1, F2, and F3 are included in chapter 7
F1:0.213; F2:0.427; F3:0.573

O reqs_int_density = Undetected_Reqs_lnts/(Units_To_Be_Developed/dev_units_per_reqs+0.000001)

O across_team_interference_amplification = GRAPH(number_of_teams)
(1.00, 0.00), (2.00,1.00), (3.00,1.08), (4.00, 1.20), (5.00,1.38), (6.00,1.53), (7.00, 1.73), (8.00,1.98),
(9.00,2.25), (10.0, 2.69), (11.0,3.30)
DOCUMENT:
Interteam interferences amplification caused by multiple-team concurrent development
Modeled as a nonlinear function of the number of concurrent teams according to Fujitsu's experience

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VJ devjjhase_interference_amplification = GRAPH(frac_dev_pcvd_compIeted)
(0.00,2.50), (0.1,2.20), (0.2,1.90), (0.3,1.60), (0.4,1.35), (0.5,1.10), (0.6,0.85), (0.7,0.55). (0.8,
0.35), (0.9,0.15), (1,0.00)
DOCUMENT:
Interferences amplification along the dimension of development life cycle
Based on Fujitsu’s experience

0 effort_to_detect_a dev_int= GRAPH(dev_int_density)
(0.00,2.00), (0.1, f.69), (0.2,1.55), (0.3,1.41), (0.4,1.33), (0.5,1.25), (0.6,1.19), (0.7,1.13), (0.8,
1.07), (0.9,1.05), (1,1.00)
DOCUMENT:
Average effort to detect an interteam development (design and coding) interference
Modeled as a graph function of development interference density according to Fujitsu's experience

0 effort_to_detect_a_reqs_int = GRAPH(reqs_int_density)
(0.00, 0.203), (0.1,0.165), (0.2,0.14), (0.3,0.13), (0.4,0.12), (0.5,0.115), (0.6,0.11), (0.7, 0.108),
(0.8, 0.104), (0.9,0.102), (1,0.1)
DOCUMENT:
Average effort to detect a requirements phase interteam interference
Modeled as a graph function of requirements interference density according to Fujitsu's experience

Q frac_daily_MP_to_int_detection = GRAPH(IF(number_of_teams<=1)
THEN 0
ELSE frac_project_pcvd_completed)
(0.00, 0.00), (0.1, 0.00), (0.2,0.05), (0.3,0.00), (0.4,0.00), (0.5,0.00), (0.6, 0.00), (0.7,0.00), (0.8,
0.05), (0.9,0.00), (1,0.00)
DOCUMENT:
The fraction of daily manpower that is allocated to interteam interference detection

O frac devjnt = GRAPH(interteam_communication_overhead)
(0.00,0.1), (0.1,0.09), (0.2,0.083), (0.3,0.077), (0.4, 0.074), (0.5, 0.0705), (0.6, 0.068), (0.7, 0.066),
(0.8, 0.064), (0.9,0.062), (1,0.06)
DOCUMENT:
The fraction of development tasks that are considered as interferences
Modeled as a graph function of interteam communication overhead
The general shape of the graph is based on Fujitsu's experience

0 fracjeqsjnt = GRAPH(interteam_communication_overtiead*100)
(0.00,0.1), (1.00,0.094), (2.00,0.087), (3.00,0.082), (4.00,0.0765), (5.00,0.072), (6.00, 0.069),
(7.00, 0.066), (8.00, 0.064), (9.00,0.062), (10.0,0.06)
DOCUMENT:
The fraction of requirements specifications that are considered as interferences
Modeled as a graph function of interteam communication overhead
The general shape of the graph function is based on Fujitsu's experience

Overall Communication Overhead
f~| Cum_interteam_Comm_Overhead(t) = Cum_interteam_Comm_Overhead(t - dt) +

(interteam_comm_cum_rate) * dt
INIT Cum_interteam_Comm_Overhead = 0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

interteam_comm_curn_rate = mult_to_interteam_comm_overhead *
interteam_communication_overhead

□ Cum_lntrateam_Comm_Overtiead(t) = Cum_lntrateam_Comm_Overtiead(t - dt) +
(intrateam_comm_factor_cum_rate) * dt
INIT Cum_lntrateam_Comm_Overhead = 0
INFLOWS:

intrateam_comm_factor_cum_rate = intrateam_communication_overhead * number_of_teams

O Cum_Overall_Comm_Overhead(t) = Cum_Overall_Comm_Overhead(t - dt) +
(overall_comm_overhead_cum_rate) * dt
INIT Cum_Overall_Comm_Overhead = 0
INFLOWS:

overall_comm_overtiead_aim_rate = overall_communication_overhead
□ Cum_Team_Size(t) = Cum_Team_Size(t - dt) + (team_size_cum_rate) * dt

INIT Cum_Team_Size = 0
INFLOWS:

^ team_size_cum_rate = average_team_size
O averagejnterteam_comm_overhead = Cum_interteam_Comm_Overhead/(TIME+0.00001)
O averageJntrateam_comm_overtiead = Cum Jntrateam_Comm_Overhead/(TIME+0.00001)
O average_overail_comm_overhead = Cum_Overall_Comm_Overhead/(TIME+0.00001)
O average_team_size = current_WF I number_of_teams

DOCUMENT:
Total number of current work force level divided by the number of concurrent teams

O interteam_to_intrateam_comm_ratio = (100*averagejnterteam_comm_overhead) /
(100*average_intrateam_comm_overhead+0.00001)

■'I' mult_to_intertearn_comm_overhead = 20
DOCUMENT:
The value is set to model different interteam-to-intrateam communication overhead ratio
More detailed explanations are included in chapter 7
M1:0.25; M2:1.0; M3:2.0

number_of_teams = 10
DOCUMENT:
Total number of concurrent development teams

O overall_communication_overhead = MIN(1, intrateam_communication_overhead +
interteam_communication_overhead * mult_to_interteam_comm_overhead)

O project_average_team_size = Cum_Team_Size/(TIME+0.00001)
O interteam_communication_overhead = GRAPH(number_of_teams)

(1.00, 0.00), (2.00. 0.004), (3.00, 0.0085), (4.00, 0.014), (5.00, 0.021), (6.00, 0.028), (7.00, 0.0355),
(8.00,0.043), (9.00,0.0505), (10.0,0.063)
DOCUMENT:
Interteam communication overhead is modeled as a function of the number of concurrent teams

0 intrateam_communication_overhead = GRAPH(average_team_size)
(0.00, 0.00), (5.00, 0.015), (10.0, 0.06), (15.0,0.135), (20.0, 0.24), (25.0,0.375), (30.0, 0.54)
DOCUMENT:
Intrateam communication overhead is modeled as a function of average team size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

OOO
O

O
O

O
O

O
O

O
O

O
O

U

o
o

214

Planning
average_component_size = (initia!_num_of_reqs * LOC_per_reqs) / number_of_components
average_WF = ROUND(initial_effort_estimate/initial_duration_estimate)
BRAKJactor = 0
DOCUMENT:
Breakage percentage: a COCOMO 2.0 Requirements Volatility measure
estimate_cf_project_size =128
DOCUMENT:
Project size in KLOC
initial_duration_estimate = 19 * 33.3
DOCUMENT:
Initial estimate of project duration
One month is considered as equal to 19 working days
initial_effort_estimate = 19 * (46.1 + 658.9)
DOCUMENT:
Initial estimate of project effort
Derived from a nominal 128 KLOC COCOMO 2.0 project; 46.1 person-months for requirements; 658.9
person-months for development and integration and test
One person-month is considered as equal to 19 person-days

initial_exp_WF = (average_WF*init_staffing_factor)* (init_pct_staff_exp/100)
initial_new_WF = (average_WPinit_staffing_factor) * (1-init_pct_staff_exp/100)
initial_num_of_reqs = (estimate_of_project_size*1000)/LOC_per_reqs
init_pct_staff_exp = 100
init_planned_effort_to_devj>hase = (initial_effort_estimate*pct_effort_to_dev)/100
init_planned_effort_to_reqs = initial_effort_estimate *(pct_effort_to_reqs/100)
init_planned_effort_to_SIT = init'al_effort_estimate*(pct_effort_to_SIT/100)
init_staffing_factor = 0.37
LOC_per_reqs = 125
DOCUMENT:
A requirements unit is assumed to be 125 LOC large
number_of_components = 128
pct_effort_to_dev = 67.3
DOCUMENT:
The percentage of project effort that is allocated to the development (design and coding) phase
Based on COCOMO 2.0 [23]
pct_effort_to_reqs = 6.5
DOCUMENT:
The percentage of project effort that is allocated to the requirements phase
Based on COCOMO 2.0 [23]

C pct_effort_to_SIT = 26.2
DOCUMENT:
The percentage of project effort that is allocated to system integration and test
Based on COCOMO 2.0 [23]

O Unplanned_Reqs_Change = initial_num_of_reqs * (BRAK_factor/100)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Project Control
□ Planned_Project_Duration(t) = Planned_Project_Duration(t - dt) + (project_duration_change_rate) *

INIT Planned_Project_Duration = initial_duration_estimate

INFLOWS:
^ project_duration_change_rats = IF (frac_project_pcvd_completed<1 AND

Planned_Project_Effort>INIT(Planned_Project_Effort))
THEN (targetjproject_duration-Planned_Project_Duration) / (sched_adjustment_time/DT)
ELSE 0

□ Planned_Project_Effort(t) = Planned_Project_Effort(t - dt) + (PPE_change_rate) * dt
INIT Planned_Project_Effort = initial_effort_estimate
INFLOWS:

*£? PPE_change_rate = (target_project_effort-Planned_Project_Effort) /
(plannedjroject_effort_adj_time/DT)

(~l Project_Effort_Expenditure(t) = Project_Effort_Expenditure(t - dt) + (project_effort_cum_rate) * dt
INIT Project_Effort_Expenditure = 0
INFLOWS:

^ project effort_cum_rate = IF(frac_project_pcvd_completed>0.95 AND defects_removed=1)
THENO
ELSE current_WPDT

□ Project_Elapsed_Time(t) = Project_Elapsed_Time(t - dt) + (PET_inc_rate) * dt
INIT Project_Elapsed_Time = 0
INFLOWS:

^ PET_inc_rate = IF(project_complete)
THENO
ELSE DT

O MP_excess_absorbed = MAX(0,
frac_MP_excess_absorbed*(Planned_Project_Effort-Project_Effort_Expenditure) -
pcvd_project_effort_needed)

O MP_gap_handled = IF(pcvd_project_effort_gap>0)
THEN MIN(pcvd_project_effort_gap, max_MP_shortage_to_be_handled)
ELSEO

O pcvd_project_effort_gap = pcvd_project_effort_needed -
(Planned_Project_Effort-Project_Effort_Expenditure)

O pcvd_project_effort_needed =
pcvd_reqs_phase_effort_needed+pcvd_dev_phase_effort_needed+pcvd_SIT_effort_needed

C j planned_project_effort_adj_time = 3
DOCUMENT:
The delay in adjusting the perceived project effort
Set to 3 working days (7]

O project_effort_gap_reported = pcvd_project_effort_gap - MP_gap_handled + MP_excess_absorbed
O project_time_remaining = MAX(Planned_Project_Duration-Project_EIapsed_Time, 0)
O remaining_project_effort = MAX(0, target_project_effort-Project_Effort_Expenditure)
O schedule_pressure = SMTH1 (pcvd_project_effort_gap/100,40)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

216
O sched_adjustment_time = 3

DOCUMENT:
The delay in adjusting the planned project schedule
Set to 3 working days (i.e., the same as project effort adjustment delay)

O target_project_duration - Project_EIapsed_Time+time_needed
O target_projsct_effort = Planned_Project_Effort + project_effort_gap_reported
O target_WF = IF(project_fme_remaining> 10)

THEN (Planned_Project_Effort-Project_Effort_Expenditure+project_effort_gap_reported)/
project_time_remaining
ELSE (Planned_Project_Effort-Project_Effbrt_Expenditure+project_effort_gap_reported)/10

O time_needed = IF(current_WF+desired_new_staff>average_WF)
THEN remainingLproject_effort/ (current_WF+desired_new_staff)
ELSE remainingt_project_effort/ average_WF

0 frac_MP_excess_absorbed =
GRAPH(pcvdj3roject_effort__needed/(Planned_Project_Effort-Project_Effort_Expenditure+0.00001))
(0.00,0.00), (0.1, 0.2), (0.2, 0.4), (0.3,0.55), (0.4, 0.7), (0.5, 0.8), (0.6, 0.9), (0.7, 0.95), (0.8,1.00), (O.f
1.00), (1,1.00)

0 weight_to_actual_project_effort_needed = GRAPH(frac_project_pcvd_completed)
(0.00, 0.00), (0.1, 0.1), (0.2, 0.2), (0.3,0.3), (0.4,0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0.8, 0.8), (0.9,
0.9), (1,1.00)

Project Effort 1
1 I Cum_Dev_Defects_Corredion_Effort(t) = Cum_Dev_Defects_Correction_Effort(t - dt) +

(dev_defects_correction_effort_cum_rate) * dt
INIT Cum_Dev_Defeds_Correction_Effort = 0
INFLOWS:

dev_defects_correction_effort_cum_rate = (DT*daiiy_MP_to_dev_defect_correction) I
(daily_MP_factor+0.000001)

I I Cum_Dev_Effort(t) = Cum_Dev_Effort(t - dt) + (dev_MP_expending_rate) * dt
INIT Cum_Dev_Effort = 0
INFLOWS:

^ dev_MP_expending_rate = (DT*daily_MP_to_dev) / (daily_MP_factor+0.000001)
□ Cum_Dev_QA_Effort(t) = Cum_Dev_QA_Effort(t - dt) + (dev__QA_MP_expending_rate) * dt

INIT Cum_Dev_QA_Effort = 0
INFLOWS:

dev_QA_MP_expending_rate = (DT*daily_MP_to_dev_QA) I (daily_MP_factor+0.00001)
I I Reqs_Defects_Correction_Effort(t) = Reqs_Defects_Correction_Effort(t - dt) +

(reqs_defects_correction_effort_cum_rate) * dt
INIT Reqs_Defects_Correction_Effbrt = 0
INFLOWS:

^ reqs_defects_correction_effort_cum_rate = daily_MP_to_spec_defect_correction /
(daily_MP_factor+0.0000001)

□ Reqs_Spec_Effort(t) = Reqs_Spec_Effort(t * dt) + (spec_effort_cum_rate) * dt
INIT Reqs_Spec_Effort = 0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

217
•gf spec_effort_cum_rate = daily_MP_to_spec I (daily_MP_factor+0.0000001)

□ Spec_QA_Effort(t) = Spec_QA_Effort(t - dt) + (spec_QA_effort_cum_rate) * dt
INIT Spec_QA_Effort = 0
INFLOWS:

" f t spec_QA_effort_cum_rate = daily_MP_to_spec_QA / (daily_MP_factor+0.0000001)
□ Training_Effort(t) = Training_Effort(t - dt) + (training_effort_increase_rate) * dt

INIT TrainingJEffoit = 0
INFLOWS:

■g? training_effortJncrease_rate = current_WF * (DT*training_time)

Project Effort 2
□ Cum_Dev_Phase_Effort(t) = Cum_Dev_Phase_Effort(t - dt) + (daily_dev_phase_MP_exp_rate) * dt

INIT Cum_Dev_Phase_Effort= 0
INFLOWS:

“gf daily_dev_phase_MP_exp_rate = (DT*daily_MP_to_dev_phase) / (daily_MP_factor+0.000001)

□ Cum_Reqs_Phase_Effort(t) = Cum_Reqs_Phase_Effort(t - dt) + (reqs_effort_expending_rate) * dt
INIT Cum_Reqs_Phase_Effort = 0
INFLOWS:

*gf reqs_effort_expending_rate = daiiy_MP_to_reqs_phase f (daily_MP_factor+0.000001)
□ Cum_S!T_Effort(t) = Cum_SIT_Effort(t - dt) + (daily_SIT_MP_expending_rate) * dt

INIT Cum_SIT_Effort = 0
INFLOWS:

■gp daily_SIT_MP_expending_rate = (DT*daiiy_MP_to_SIT_phase) / (daily_MP_factor+0.00001)
□ Defects_FIT_Correction_Effbrt(t) = Defects_FIT_Correction_Effort(t - dt) +

(defects_FIT_correction_effort_cum_rate) * dt
INIT Defects_FIT_Correction_Effort = 0
INFLOWS:

•gf defects_FIT_correction_effort_cum_rate = (DT*daily_MP_to_defects_FIT_correction) I
(daily_MP_factor+0.00001)

□ System_lntegration_Effort(t) = System_lntegration_Effort(t - dt) + (SI_effort_cum_rate) * dt
INIT System_lntegration_Effort = 0
INFLOWS:

•gf SI_effort_cum_rate = (DT*daily_MP_to_integration)/(daiiy_MP_factor+0.00001)
□ System_Test_Effort(t) = System_Test_Effort(t - dt) + (system_test_MP_expending_rate) * dt

INIT System_Test_Effort = 0
INFLOWS:

■gf system_test_MP_expending_rate = (DT*daily_MP_to_test) / (daily_MP_factor+0.00001)
O cumulative_project_effort = lnt_Detection_Effort + Change_Rework_Overhead +

Cum_Reqs_Phase_Effbrt + Cum_Dev_Phase_Effort + Cum_SIT_Effort

Project Scope Change
□ Change_Rework_Overhead(t) = Change_Rework_Overtiead(t - dt) +

(daily_MP_to_reqs_change_rework) * dt
INIT Change_Rework_Overhead = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

INFLOWS:
^ daily_MPJo_reqs_change_rework = (reqs_change_rate * rework_cost_ratio *

nominal_reworlc_cost) / (dai!y_MPJactor+0.000001)
I I Cum_Discovered_Reqs(t) = CumJDiscovered_Reqs(t - dt) + (reqs_discovery) * dt

INIT Cum_Discovered_Reqs = 0
INFLOWS:

reqs_discovery = unplanned_reqs_discovery
I I Cum_Reqs_Change(t) = Cum_Reqs_Change(t - dt) + (reqs_change_rate) * dt

INIT Cum_Reqs_Change = 0
INFLOWS:

^ reqs_change_rate = Discovared_Reqs I (unplanned_reqs_inc_delay/DT)
I I Discovered_Reqs(t) = Discovered_Reqs(t - dt) + (unplanned_reqs_discovery - reqs_change_rate) *

INIT Discovered_Reqs = 0

INFLOWS:
unplanned_reqs_discovery =
Unplan ned_Reqs*(DT*frac_unplanned_reqs_discovered_per_day_C1)/100

OUTFLOWS:
^ reqs_change_rate = Discovered_Reqs I (unplanned_reqs_inc_delay/DT)

I I Pcvd_Project_Size(t) = Pcvd_Project_Size(t - dt) + (PPSJnc - PPS_dec) * dt
INIT Pcvd_Project_Size = estimate_of_project_size
INFLOWS:

^ PPSJnc = (LOC_per_reqs/1000)*(reqs_change_rate*frac_reqs_addition +
raw_reqsJnc_dueJo_reqsJnt)

OUTFLOWS:
PPS_dec = (LOC_per_reqs/1000) * (reqs_change_rate*(1-frac_reqs_addition) +
reqs_deletion_dueJoJnt)

I I Unplanned_Reqs(t) = Unplanned_Reqs(t - dt) + (- unplanned_reqs_discovery) * dt
INIT Unplanned_Reqs = Unplanned_Reqs_Change
OUTFLOWS:

^ unplanned_reqs_discovery =
Unplanned_Reqs*(DT*frac_unplanned_reqs_discovered_per_day_C1)/100

O frac_reqs_addition = 1
O nominal_rework_cost = 4
O pct_unplanned_reqs_discovered = 100*Cum_Discovered_Reqs/(INiT(Unplanned_Reqs)+0.0001)
O project_scope_change_percentage = 100 * (Pcvd_Project_Size - INIT(Pcvd_Project_Size)) I

INIT(Pcvd_Project_Size)
C unplanned_reqsjnc_delay = 10

DOCUMENT:
The delay in incorporating unplanned requirements into the project
Set to 10 working days

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

0 frac_unplanned_reqs_discovered_per_day_C1 = GRAPH(fracj}rojectj3Cvd_completed)
(0.00,1.00), (0.1,1.00), (0.2,1.00), (0.3,1.00), (0.4,1.00), (0.5,1.00), (0.6,1.00), (0.7,1.00), (0.8,
1.00), (0.9,1.00), (1,1.00)
DOCUMENT:
The fraction of unplanned requirements discovery pattern (pattern C1)
More detailed explanations are included in chapter 7

0 frac_unplanned_reqs_discovered_per_day_C2 = GRAPH(frac_project_pcvd_completed)
(0.00,0.00), (0.1, 0.1)7 (0.2, 0.5), (0.3, 0.95), (0.4,1.50), (0.5,1.50), (0.6,1.50), (0.7,1.50), (0.8, 1.50),
(0.9,1.50), (1,1.50)

0 frac_unplanned_reqs_discovered_per_day_C3 = GRAPH(frac_project_pcvd_completed)
(0.00,0.00), (0.1,0.00), (0.2,0.00), (0.3,0.1), (0.4,0.3), (0.5,0.7), (0.6,1.20), (0.7,2.00), (0.8,2.00),
(0.9,2.00), (1,2.00)

0 rework_cost_ratio = GRAPH(frac_project_pcvd_completed)
(0.00,1.00), (0.1, 5.00), (0.2,5.00), (0.3,5.00), (0.4,10.0), (0.5,10.0), (0.6,10.0), (0.7,15.0), (0.8,
20.0), (0.9,20.0), (1,20.0)
DOCUMENT:
Overhead to incorporate requirements change during the requirements phase: during the design stage
during the coding stage: during the test stage = 1:5:1020

Project Scope Change Due To Requirements Change
O deved_units_del_due_toJnt = dev_deletion_due_to_int * frac_deved_units
O deved_units_del_due_to_RC = dev_units_deletion_due_to_RC * frac_deved_units
O dev_change_due_to_int = dev_int_resolution

DOCUMENT:
Development units change due to interference resolution; the resolution of requirements interferences
and the resolution of development interferences

O dev_deletion_due_to_int = dev_change_due_to_int * (1-frac_dev_units_addition)
O dev_units_deletion_due_to_RC = reqs_deletion_due_to_RC * dev_units_per_reqs
O dev_units_del_due_to_int = dev_deletion_due_to_int * frac_raw_dev_units
O dev_unitsJnc_due_toJnt = dev_change_due_to_int * frac_dev_units_addition
O frac_deved_units = Units_Developed/

(Units_To_Be_Developed+Units_Developed+Units_QAed+0.000001)
O ffac_devjnt_from_reqs_int = 0.5
O frac_dev_units_addition = 1
O frac_QAed_spec = IF(Raw_Reqs+Reqs_Spec+QAed_Reqs_Spec = 0)

THEN 0
ELSE QAed_Reqs_Spec/ (Raw_Reqs+Reqs_Spec+QAed_Reqs_Spec)

O frac_QAed_units = Units_QAed / (Units_To_Be_Developed+Units_Developed+Units_QAed+0.00001)

O frac_raw_dey_units = Units_To_Be_Developed I
(Units_To_Be_Developed+Units_Developed+Units_QAed+0.00001)

O frac_raw_reqs = IF (Raw_Reqs+Reqs_S pec+QAed_Reqs_S pec = 0)
THEN 0
ELSE Raw_Reqs / (Raw_Reqs+Reqs_Spec+QAed_Reqs_Spec)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

220
spec_defect_escape_rate = $pec_defects_detection_rate * (1 -spec_QA_effectiveness) /
(spec_QA_effectiveness+0.00001)

□ Spec_Defects_Bad_Fixes(t) = Spec_Defects_Bad_Fixes(t - dt) + (spec_defects_bad_fixes_rate) * dt
INIT Spec_Defects_Bad_Rxes = 0
INFLOWS:

spec_defects_bad_fixes_rate = spec_defect_fixing_rate * spec_defects_bad_fixes_ratio
□ Spec_Defects_Fixed(t) = Spec_Defects_Fixed(t - dt) + (sp8c_defect_fixing_rate) * dt

INIT Spec_Defects_Fixed = 0
INFLOWS:

^ spec_defect_faing_rate = (1 -spec_defects_bad_fixes_ratio) *
(daily_MP_to_spec_defiBCt_correction * DT) / MP_needed_to_fix_a_spec_defect

O post_QA_spec_defect_density =
(Spec_Defects_Bad_Fixes+Escaped_Spec_Defects)/(Cum_QAed_Reqs_Spec+0.00001)

O pre_QA_spec_defect_density = Spec_Defects / (Reqs_Spec+0.00001)
O reqs_defects_per_KLOC = 5

DOCUMENT: Requirements defects per KLOC = 5/KDSI [Boehm 81]
O spec_defects_bad_fixes_ratio = 0.12
0 spec_QA_effectiveness = GRAPH(daily_MP_to_spec_QA)

(0.00,0.00), (0.1, 0.155), (0.2,0.32), (0.3,0.49), (0.4,0.625), (0.5,0.725), (0.6,0.82), (0.7, 0.87), (0.8,
0.895), (0.9,0.9), (1,0.9)

Requirements Manpower Allocation
O average_daily_MP_per_staff= 1
O daily_MP_factor = average_daiiy_MP_per_staff * average_productive_time
O daily_MP_to_reqs_phase = IF (Spec_Defects<0.01 AND Detected_Spec_Defects<0.01 AND

frac_spec_pcvd_completed>0.99)
THENO
ELSE frac_daily_MP_to_reqs * net_total_daily_MP

O daily_MP_to_spec =
MAX(0.daily_MP_to_reqs_phase-daily_MP_to_spec_OA-daily_MP_to_spec_defect_correction)

O daily_MP_to_spec_defect_correction =
MP_needed_to_fix_a_spec_defect*desired_spec_defect_correction_rate

O daily_MP_to_spec_QA = daily_MP_to_reqs_phase * Actual_Frac_MP_On_QA
O desired_spec_defect_correction_rate = Detected_Spec_Defects/spec_defect_correction_delay
O MP_needed_to_fix_a_spec_defect = 0.5/8

DOCUMENT:
Manpower needed to fix a specification defect
Set to 0.5 staff hours [50]
1 day = 8 hours

O net_total_daily_MP = total_daily_MP - daily_MP_to_reqs_change_rework - daily_MP_to_int_detection

O Reqs_Phase_Complete = IF (frac_spec_pcvd_completed>0.99)
THEN 1
ELSE 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

221
O spec_and_QA_complete = IF (Raw_Reqs<0.1 AND Reqs_Spec<0.1)

THEN 1
ELSEO

O spec_defect_correction_delay = 5
O total_daily_MP = current_WF * daily_MP_factor
0 frac_daily_MP_to_reqs = GRAPH(frac_spec_pcvd_completed)

(0.00.1.00), (0.1,1.00), (0.2,1.00), (0.3,1.00), (0.4,0.996), (0.5,0.978), (0.6,0.942), (0.7,0.852),
(0.8,0.726), (0.9,0.456), (1,0.00)
DOCUMENT:
The fraction of daily manpower that is allocated to the requirements phase

Requirements Manpower Needed
□ Cum_Spec(t) = Cum_Spec(t - dt) + (spec_cum_rate) * dt

INIT Cum_Spec = 0
INFLOWS:

spec_cum_rate = specjate
O actual_spec_MP_needed = reqs_remaining_to_be_specified / (actual_spec_productivity+0.00001)
O actual_spec_productivity = IF(Reqs_Spec_Effort>0)

THEN Cum_Spec/(Reqs_Spec_Effbrt+0.000001)
ELSE planned_spec_productivity

O cunent_planned_reqs_phase_effort =
init_planned_effort_to_reqs*(pcvd_total_dev_units/INIT(pcvd_total_dev_units))

O pcvd_reqs_phase_effort_needed =
weight_to_actual_reqs_effort_needed*(actual_spec_MP_needed+spec_defect_correction_effort_need
ed+spec_QA_MP_needed) +
(1-weight_to_actual_reqs_effort_needed)*reqs_phase_effort_remaining

O planned_spec_productivity = INIT(Raw_Reqs) /
(init_planned_effort_to_reqs*(1-Actual_Frac_MP_On_QA))

O reqs_phase_effort_remaining = MAX(0, current_planned_reqs_phase_effort -
Cum_Reqs_Phase_Effort)

O reqs_remaining_to_be_specified = MAX(Pcvd_Project_Size*1000/LOC_per_reqs-Cum_Spec, 0)
O spec_defect_correction_effort_needed = Detected_Spec_Defects * MP_needed_toJix_a_spec_defed

O spec_QA_MP_needed = (actual_spec_MP_needed/(1-Actual_Frac_MP_On_QA)) *
Actual_Frac_MP_On_QA

0 weight_to_actual_reqs_effort_needed = GRAPH (frac_spec_pcvd_completed)
(0.00, 0.00), (0.1, 0.00)7 (0.2.0.00), (0.3, 0.00), (0.4,0.00), (0.5, 0.00), (0.6,0.2), (0.7, 0.4), (0.8,0.6),
(0.9, 0.8), (1,1.00)

Requirements Work Flow
□ Cum_QAed_Reqs_Spec(t) = Cum_QAed_Reqs_Spec(t - dt) + (QAed_reqs_spec_cum_rate -

QAed_spec_del_rate) * dt
INIT Cum_QAed_Reqs_Spec = 0
INFLOWS:

QAed_reqs_spec_cum_rate = spec_QA_rate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

222
OUTFLOWS:

■gf QAed_spec_del_rate = QAed_spec_del_du8_to_RC + QAed_spec_del_due_to_int
[~l Cum_Reqs_Spec(t) = Cum_Reqs_Spec(t - dt) + (reqs_spec_cum_rate - spec_del_rate) * dt

INIT Cum_Reqs_Spec = 0
INFLOWS:

■g? reqs_spec_cum_rate = spec_rate
OUTFLOWS:

■gf spec_del_rate = spec_del_due_to_RC + spec_del_due_to_int
□ Deleted_QAed_Spec(t) = Deleted_QAed_Spec(t - dt) + (QAed_spec_del_rate) * dt

INIT Deleted_QAed_Spec = 0
INFLOWS:

■gf QAed_spec_del_rate = QAed_spec_del_due_to_RC + QAed_spec_del_due_to_int
□ Deleted_Raw_Reqs(t) = Deleted_Raw_Reqs(t - dt) + (raw_reqs_del_rate) * dt

INIT Deleted_Raw_Reqs = 0
INFLOWS:

“g? raw_reqs_del_rate = raw_reqs_dei_due_to_RC + raw_reqs_del_due_to_int
□ Deleted_Spec(t) = Deteted_Spec(t - dt) + (spec_del_rate) * dt

INIT Deleted_Spec = 0
INFLOWS:

■gp spec_del_rate = spec_d8l_due_to_RC + spec_de!_due_to_int
□ QAed_Reqs_Spec(t) = QAed_Reqs_Spec(t - dt) + (spec_QA_rate - QAed_spec_to_dev_rate -

QAed_spec_deletion) * dt
INIT GAed_Reqs_Spec = 0
INFLOWS:

■gf spec_QA_rate = Reqs_Spec I (average_QA_delay/DT) *
daily_MP_to_spec_QA/(daily_MP_to_spec_QA+0.00001)
DOCUMENT:
Number of requirements reviewed per day

OUTFLOWS:
QAed_spec_to_dev_rate = QAed_Reqs_Spec/(QAed_spec_to_dev_delay/DT)

^ QAed_spei>_deletion = QAed_spec_del_due_to_RC + QAed_spec_del_due_to_int
□ QAed_Reqs_Spec_To_Dev_Phase(t) = QAed_Reqs_Spec_To_Dev_Phase(t - dt) +

(QAed_spec_to_dev_rate) * dt
INIT QAed_Reqs_Spec_To_Dev_Phase = 0
INFLOWS:

■gf QAed_spec_to_dev_rate = QAed_Reqs_Spec/(QAed_spec_to_dev_delay/DT)
□ Raw_Reqs(t) = Raw_Reqs(t - dt) + (reqs_incoming_rate - specjate - raw_reqs_deletion) * dt

INIT Raw_Reqs = INIT(Pcvd_Project_Size)*1000 / LOC_per_reqs
INFLOWS:

“gp reqs_incoming_rate = (raw_reqs_inc_due_to_reqs_change + raw_reqs_inc_due_to_reqs_int)

OUTFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

223
specjate = IF(Raw_Reqs>0)
THEN daiIy_MP_to_spec * spec_prod_rate * DT
ELSEO
DOCUMENT:
Requirements specification rate (i.e., requirements specified per day)

■5? raw_reqs_deletion = raw_reqs_del_due_to_RC + raw_reqs_del_due_to_int
□ Reqs_Spec(t) = Reqs_Spec(t - dt) + (spec_rate - spec_QA_rate - spec_delation) * dt

INIT Reqs_Spec = 0
INFLOWS:

■<*? spec_rate = IF(Raw_Reqs>0)
THEN daily MP_to spec*spec_prod rate*DT
ELSE 0 ~
DOCUMENT:
Requirements specification rate (i.e., requirements specified per day)

OUTFLOWS:
^ spec_QA_rate = Reqs_Spec / (average_QA_delay/DT) *

daily_MP_to_spec_QA/(daily MP_to_spec_QA+0.00001)
DOCUMENT:
Number of requirements reviewed per day

^ spec_delation = spec_del_due_to_RC + spec_del_due_to_int
□ Total_Raw_Requirements(t) = Total_Raw_Requirements(t - dt) + (raw_reqs_cum_rate -

raw_reqs_del_rate) * dt
INIT Total_Raw_Requirements = INIT(Raw_Reqs)
INFLOWS:

^ raw_reqs_cum_rate = reqs_incoming_rate
OUTFLOWS:

^ raw_reqs_del_rate = raw_reqs_del_due_to_RC + raw_reqs_del_due_to_int
O average_QA_delay = 10

DOCUMENT:
Average delay for QA
Set to 10 working days [7]

O frac_reqs_spec_QAed = Cum_QAed_Reqs_Spec/(Cum_Reqs_Spec+0.00001)
0 frac_spec_pcvd_completed = Cum_QAed_Reqs_Spec I (Pcvd_Project_Size*1 000/LOC_per_reqs)
O pcvd_reqs_phase_completed = IF(frac_reqs_spec_QAed<0.999 AND frac_reqs_spec_QAed>0.99

AND frac_daily_MP_to_reqs>0) THEN 0 ELSE 0
O QAed_spec_to_dev_delay = 1
O spec_prod_rate = (spec_prod_ratio*actual_staff_prod_rate) / LOC_per_reqs
0 spec_prod_ratio = 55/7

DOCUMENT:
Requirements specification ratio: the ratio of LOC per person-day and the number of requirements
specified per person-day
Set to 55/7 (calibrated against COCOMO 2.0, i.e., 55 person-months spent in programming and 7
person-months in requirements phase)

Staff Productive Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I I Cum_Daily_Produdwe_Time(t) = Cum_Daily_Productive_Time(t - dt) + (DPT_change_rate) *
INIT Cum_Daily_Productive_Time = 0
INFLOWS:

DPT_change_rate = average_productive_time
I I Overtimed) = Overtime(t - dt) + (overtimeJncrjate - overtime_decr_rate) * dt

INIT Overtime = 0
INFLOWS:

^ overtime_incr_rate = IF (overtime_sought>Overtime)
THEN (overtime_sought-Overtime) I (work_rate_adjustment_delay/DT)
ELSE 0

OUTFLOWS:
ovettime_decr_rate = IF (Overtime>overtime_sought)
THEN (Overtime-oveitime_sought)/(wortc_rate_adjustment_delay/DT)
ELSE 0

l~ l Project_Time(t) = Project_Time(t - dt) + (PTJncrate - PT_dec_rate) * dt
INIT Project_Time = 0.75
INFLOWS:

PT_inc_rate = ST_dec_rate
OUTFLOWS:

PT_dec_rate = ST_inc_rate
n Slack_Time(t) = Slack_Time(t - dt) + (ST_inc_rate - ST_dec_rate) * dt

INIT Slack_Time = 1 - INIT(Project_Time)
INFLOWS:

ST_inc_rate = IF(indicated_slack_time>Slack_Time)
THEN (indicated_slack_time - Slack_Time) I (work_rate_adjustment_delay/DT)
ELSE 0

OUTFLOWS:
^ ST_dec_rate = F (Slack_Time>indicated_slack_time)

THEN (Slack_Time-indicated_slack_time) / (work_rate_adjustment_delay/DT)
ELSE 0

O average_productive_time =
(1-overall_communication_overhead)*(Project_Time+effective_overtime-training_time)

0 effective_overtime = Overtime * overtime_efficiency
O indicated_overwork_time = IF(overwork_duration<1)

THENO
ELSE IF (MP_gap_handled>0)
THEN MP_gap_handled/(current_WF*overwork_duration+0.00001)
ELSE IF (MP_excess_absorbed>0)
THEN (0-MP_excess_absorbed)/(current_WPMAX(20,project_time_remaining)+0.00001)
ELSEO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

225
O indicated_slack_time = IF (overwork_duration<1)

THEN 0.2
ELSE IF(indicated_overwork_time>Slack_Time-0.1)
THEN 0.1
ELSE IF (indicated_overwork_time>=0 AND indicatedjjverworkJime<Sla<*jrime-0.1)
THEN MAX(0.1, MiN(0.3, Slack_Time-indicated_overwork_time)y
ELSE IF (indicated_ovefwork_time<0 AND 0-indicated_overwork_time<=average_productive_time)
THEN MAX(0.1, MIN(0.3, Slack_Time-indicated_ov8rwork_time))
ELSE IF(0-indicated_overwork_time>average_productive_time)
THEN MAX(0.1, MIN(0.3, Slack_Time+average_productive_time))
ELSE 0.2

O new_staff_trainingLtime = 0.6
O overtime_efficiency = 1

DOCUMENT:
Assumption: Project staff spends 100% of their overtime on the project

O overtime_sought = IF(overwork_duration<1)
THENO
ELSE IF (indicated_overwork_time>indicated_slack_time)
THEN MIN(0.5, indicated_overwork_time-indicated_slack_time)
ELSE0

O project_average_daily_productive_time = IF(TIME=0)
THEN 0
ELSE Cum_Daily_Productive_Time/TIME

G trainer's_time_per_new_staff = 0.2
DOCUMENT:
Assumptions:
1. Experienced staff spends 60% of their daily time on the project
2. Each experienced staff can train three new staff members [AHM91J.
Set at 0.2 (I.e., 0.6/3)

O training_time = SMTH1 ((new_staff_training_time*New_Staff+trainer's_time_per_new_staffNew_Staff)
I (Exp_Staff+ New_Staff), 5)

0 work_rate_adjustment_delay = 10
DOCUMENT:
The average delay that project staff members adjust their work rate.
Set at 10 working days [AHM91]

Staff Productivity
1 I Exhaustion_Level(t) = Exhaustion_Level(t - dt) + (exh_buiidup - exh_diminish) * dt

INIT Exhaustion_Level = 0
INFLOWS:

^ exh_buildup = IF (exh_diminish>0.0001 AND overwork_checkpoint=1)
THENO
ELSE exhaustion_inc_rate

OUTFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■jf exh_diminish = IF (overwork_checkpoint=1 OR oveiwork=0)
THEN Exhaustion_Level / (exh_diminish_time/DT)
ELSE 0

□ Max_Exh_Check_Point(t) = Max_Exh_Check_Point(t - dt) + (max_ECP_inc_rate -
max_ECPjlecjite) * dt
INIT Max_Exh_Check_Point = 0
INFLOWS:

max_ECP_inc_rate = exh_buildup
OUTFLOWS:

' f t max_ECP_dec_rate = IF (exh_diminish<0.01 AND overwork_checkpoint=1)
THEN PULSE(Max_Exh Check_Point)
ELSEO

0 actual_staff_prod_rate = nominai_staffjjrod_rate *
(SP_effect_on_prod_rate/1) *
(exhaustion_effect_on_prod_rate/1) *
(leaming_effect_on_prod_rate/1)
exh_diminish_time = 20
DOCUMENT:
Set to 20 working days [7]

O max_MP_shortage_to_be_handled = max_overwork_time * max_oveiwork_duration * current_WF
O max overwork_duration = 50

DOCUMENT: “
The maximum duration that project staff members are willing to work overtime
Set at 50 working days [7]

O max_overwork_time = 0.6
0 nominal_staff_prod_rate = frac_staff_exp*LOC_per_dev_unit +

0.5*(1 -frac_staff_exp)*LOC_per_dev_unit
DOCUMENT:
Set at one development units per day for the experienced staff members
Set at 0.5 development units per day for new staff members [7]

O overwork = MAX(0,Overtime + (INIT(Slack_Time)- Slackjime))
O overwork_checkpoint = SWlTCH(Max_Exh_Check_Point, 45)
O overwork_duration = IF(exh_diminish>0.02)

THEN 0
ELSE max_overwork_d uration*exhaustion_effect_on_overwork_duration

O overwork_willingness = IF(exh_diminish>0.01)
THEN 0
ELSE 1

O exhaustion_effect_on_oveiwork_duration = GRAPH(Exhaustion_Level)
(0.00.1.00), (10.0,0.8), (20.0,0.6), (30.0,0.4), (40.0,0.2), (50.0,0.00)
DOCUMENT:
Adapted from the "Multiplier to the Overwork Duration Threshold due to Exhaustion" parameter [7]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I I Defects_FoundJn_SIT(t) = Defecte_Found_in_SIT(t - dt) + (defects_detection_rate -
defects_FIT_correction_rate) * dt
INIT Defects_Found_in_SIT = 0
INFLOWS:

defects_detection_rate = num_of_defects_detected_per_unit * testing_rate * test_effectiveness

OUTFLOWS:
' f ? defects_FIT_correction_rate = (DT*daily_MP_to_defects_FIT_correction) /

(effortJojx>rrect_ajtefect_FIT+0.00001)
□ Defects_ReIeased(t) = Defects_Released(t - dt) + (defects_releasing_rate) * dt

INIT Defects_Released = 0
INFLOWS:

^ defectsjeleasingjate = num_of_defects_detected_per_unit*testing_rate *
(1-test_effectiveness)

□ IntegratedJJnits(t) = lntegrated_Units(t - dt) + (unitsjntegrationjate - testing_rate) * dt
INIT IntegratedJJnits = 0
INFLOWS:

^ units_integration_rate = SIT_degree_of_concurrency *
daily_MP_to_integration/(0.5*testing_effort_per_unit+0.00001)

OUTFLOWS:
testing_rate = SIT_degreejof_concurrency * (DT*daily_MP JoJest) /
(0.5*testing_effoit_per_unit+0.00001)

I I PreTest_Defects(t) = PreTest_Defects(t - dt) + (pretestjiefJncjate) * dt
INIT PreTest_Defects = 0
INFLOWS:

‘S ’ pretest_def_inc_rate = pretest_defectsjnc_rate
□ Units_To_Be_lntegrated(t) = Units_To_BeJntegrated(t - dt) + (deved_units_inc_rate -

units_integration_rate) * dt
INIT Units_To_Be_lntegrated = 0
INFLOWS:

•gp deved_units_inc_rate = deved_unitsJncoming_rate
OUTFLOWS:

unitsjntegrationjate = SrT_degree_of_concurrency *
daily_MP_toJntegration/(0.5*testing_effort_per_unit+0.00001)

O defects_removed = IF(Current_PreTest_Defects<1 AND Defects_Found_in_SIT<1)
THEN f
ELSEO

O deved_units_incoming_rate = QAed_deved_units_to_test
O effort_to_correct_a_defect_FIT = 0.5
O frac_units_integrated = Cum_UnitsJntegrated/pcvd_total_integrated_units
O frac_units_tested = Cum_Units_Tested/(pcvd_total_integrated_units+0.00001)
O nom_testing_effort_per_unit = 1.5
O num_of_defects_detected_per_unit = 12
O pcvd_total_integrated_units = pcvd_total_dev_units

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

228
O project_pcvd_completed = IF(Units_To_BeJntegrated<0.1 AND frac_units_tested>0.999 AND

Current_PreTest_Defects<0.25 AND Defects_Found_in_SIT<0.25)
THEN PAUSE
ELSEO

O SlT_degree_of_concurrency = 1
O testing_effort_per_unit = nom_testing_effort_per_unit * mult_to_testing_effort
0 mult_to_testing_effort = GRAPH(number_of_teams)

(1.00,1.00), (2.00,1.05), (3.00.1.10). (4.00ri.15). (5.00.1.20), (6.00,1.25), (7.00, 1.30), (8.00,1.35),
(9.00,1.40), (10.0,1.45)

0 test_effectiveness = G RAPH (daity_MP_to_test)
(0.00,0.9), (1.00,0.9), (2.00,0.9), (3.00,0.9), (4.00, 0.9), (5.00,0.9), (6.00,0.9), (7.00, 0.9), (8.00, 0.9'
(9.00,0.9), (10.0,0.9)

System Integration and Test Manpower Allocation
O daily_MP_to_defects_FlT_correction = IF(frac_units_tested<1)

THEN MiN(MP_needed_to_fix_a_defect_Frrdesired_defect_FIT_correction_rate,
daily_MP_to_SIT_phase)
ELSE dai!y_MP_to_SIT_phase

O dai!y_MP_to_integration = IF(frac_unitsJntegrated*100<100)
THEN MAX(0,daily_MP_to_SIT_phase-daiiy_MP_to_test-daiiy_MP_to_defects_FIT_cx)iTection)
ELSEO

O daily_MP_to_SIT_phase = IF (project_pcvd_completed=1)
THEN 0 ~
ELSE total_daily_MP * frac_daily_MP_to_SIT

O daily_MP_to_test = IF (frac_units_tested<1)
THEN (daiiy_MP_to_SIT_phase-daily_MP_to_defects_FIT_correction) *
frac_planned_SIT_MP_on_test
ELSEO

O defects_Frr_correction_delay = 5
O desired_defect_FIT_correction_rate = Defects_Found_in_SIT / (defects_FlT_correction_delay)
O frac_daily_MP_to_SIT = 1 - frac_daily_MP_to_reqs - frac_daily_MP_to_dev
O frac_planned_SIT_MP_on_test = IF(frac_units_tested<0.999)

THEN 0.75
ELSE 0.75

O MP_needed_to_fix_a_defect_FIT = pcvd_def_FIT_correction_prod

System Integration and Test Manpower Needed
l~ l Cum_Units_lntegrated(t) = Cum_Units_lntegrated(t - dt) + (integrated_units_cum__rate) * dt

INIT Cum_Units_lntegrated = 0
INFLOWS:

■gp integrated_units_cum_rate = units_integration_rate
O actual_def_FIT_correction_prod = IF (Defects_FIT_Corrected>0)

THEN Defects_FIT_Corrected / Defects_FIT_Correction_Effort
ELSE planned_def_FIT_correct_prod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O actual_intg_MP_needed = (pcvd_total_dev_units-Cum_Units_lntegrated)/(actualJntgLprod+0.000001)

O actual_intg_prod = IF(Cum_UnitsJntegrated>0)
THEN Cum_Units_lntegrated/(Sy$temJntegrat'on_Effort+0.00001)
ELSE plannedJntg_prod

O actual_system_test_MP_need = (pcvd_total_dev_un(ts-Cum_Units_Tested) /
(actual_system_test_prod+0.00001)

O actual_system_test_prod = IF (Cum_Units_Tested>0)
THEN Cam_Units_Tested/System_Test_Effort
ELSE planned_system_test_prod

O current_planned_SIT_effort = init_planned_effort_to_SIT *
(pcvd_total_dev_units/IN IT (pcvd_total_dev_un its))

O def_FIT_correction_effort_needed = Defects_FoundJn_SIT*effott_to_correct_a_defect_FIT
O pcvd_def_FIT_correction_prod =

SMTH1(actual_def_FIT_correctionj3rod,20,actual_def_FIT_correction_prod)
O pcvd_S IT_effort_needed =

weight_to_actual_SIT_MP_needed*(actualJntg_MP_needed+actual_system_test_MP_need+def_FIT
_correction_effort_needed) +
(1-weight_to_actual_SrT_MP_needed)*SIT_effort_remaining

O planned_def_FIT_correct_prod = 5
O planned_intg_prod = pcvd_total_dev_units /

(current_planned_SIT_effort*(1-frac_planned_SIT_MP_on_test))
O planned_system_test_prod = pcvd_total_dev_units I

(current_planned_SIT_effbrt*frac_planned_SIT_MP_on_test)
O SIT_effort_remaining = MAX(0, current_planned_SIT_effort-Cum_SIT_Effort)
0 weight_to_actual SIT MP_needed = GRAPH(frac_units_tested)

(0.00,0.00), (0-170-00), (072, 0.096), (0.3,0.234), (0.4,0.462), (0.5, 0.708), (0.6, 0.852), (0.7, 0.948),
(0.8, 0.994), (0.9, 0.997), (1,1.00)

Workforce
□ Desired_ln_T rans_Staff(t) = Desired_ln_T rans_Staff(t - dt) + (DITSjate - new_staff_in_trans_rate) *

dt
INIT Desired_ln_Trans_Staff = 0
INFLOWS:

DITS_rate = staff_out_trans_rate
OUTFLOWS:

^ new_staff_in_trans_rate= Desired_ln_Trans_Staff/ (in_trans_delay/DT)
1 I Exp_Staff(t) = Exp_Staff(t - dt) + (assimilation_rate - quit_rate - exp_staff_out_trans_rate) * dt

INIT Exp_Staff = initial_exp_WF
INFLOWS:

assimiiation_rate = New_Staff/ (assimilation_delay/DT)
OUTFLOWS:

^ quit_rate = Exp_Staff / (employment_time/DT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

230
O employmentjime = 673

DOCUMENT:
Staff average employment time
Set at 673 working days [7]

O frac_staff_exp = Exp_Staff I current_WF
DOCUMENT:
Number of experienced staff divided by current total work force

O FTE_exp_staff = Exp_Staff * average_daily_MP_per_staff
O hiring_delay = 40

DOCUMENT:
Time to hire new project
Set at 40 working days [7]

O in_trans_delay = 10
DOCUMENT: Time to transfer staff into the project
Set at two weeks (i.e., ten working days) [7]

O max_new_staff = mx_new_hirees_per_exp_staff * FTE_exp_staff
O mx_new_hirees_per_exp_staff= 3
O out_trans_delay = 10 *

DOCUMENT:
Time to transfer staff out of the project
Set at 10 work days (same as the in-transfer delay)

O project_average_staff_level = IF(TIME>0)
THEN Project_Staff_Level / TIME
ELSE0

O staff_in_trans_rate = hiring_rate + new_staff_in_trans_rate
O staff_out_trans_rate = new_staff_out_trans_rate + exp_staff_out_trans_rate
O WF_production_delay = hiring_delay + assimilation_delay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C

KEY PROJECT STATISTICS OF THE EXAMPLE PROJECT

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

232
1. EXAMPLE is an organic-m ode project.

2. Project real size is 64 KDSI (or 64000/60 = 1067 tasks).

3. Project w as underestim ated by a factor of 1.5.

4. Initial estim ate of the project size is 42.88 KDSI (or 2880/60 = 714.6 tasks).

5. The distribution of effort expenditure is 22% for system testing, 15 to 20% for

QA.

6. Staff's "actual productivity" is 33.84 DSI/m an-day.

7. The "actual fraction of a m an-day on project" is 60%.

8. Com m unication overhead is defined as a function of team size.

9. COCOM O's estim ate for the average staffing level is 8 people. Therefore, com­

m unication overhead is a round 5%.

10. Nom inal staff productivity is 60 D SI/m an-day. For the EXAMPLE project, a task

is 60 DSI, and the nom inal potential staff productivity is 1 ta sk / man-day.

11. Average daily m anpow er per staff is 1 (i.e., staff work full-time on the EXAM­

PLE project).

12. The EXAMPLE project starts w ith a w ork force equal to half the "average staff­

ing level," which is estim ated to be eight project staff. Therefore, there are four

project staff on board in the initial stage of the project.

13. Project took 430 w ork days to complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

[1] K. R. Abbott, "Product development: a chunk a t a time," Proceedings of the 8th

IEEE International W orkshop on Software Technology and Engineering Practice

Incorporating C om puter A ided Software Engineering, IKHK C om puter Society,

Los Alamitos, CA, 1997.

[2] T. K. Abdel-Hamid and S. E. Madnick, "A m odel of software project m anage­

m ent dynamics," Proceedings of the 6th Annual International C om puter Soft­

w are and Applications Conference, IEEE Com puter Society, 1982, pp. 539-54.

[3] T. K. Abdel-Hamid and S. E. Madnick, "Im pact of schedule estim ation on soft­

w are project behavior," IEEE Software, Vol. 3, No. 4, July 1986, pp. 70-75.

[4] T. K. Abdel-Hamid, "The dynamics of software project staffing: a system

dynamics based sim ulation approach," IEEE Transactions on Software Engineer­

ing, Vol. 15, No. 2, February 1989, pp. 109-119.

[5] T. K. Abdel-Hamid, "A study of staff turnover, acquisition, and assim ilation

and their impact on software developm ent cost and schedule," Journal o f Man­

agement Information Systems, Vol. 6, No. 1 ,1989, pp. 21-40.

[6] T. K. Abdel-Hamid, "Investigating the cost/schedule trade-off in software

development," IEEE Software, Vol. 7, No. 1, January 1990, pp. 97-105.

[7] T. K. Abdel-Hamid and S. E. Madnick, Software project dynamics: an integrated

approach, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[8] T. K. Abdel-Hamid, "Investigating the impacts of m anagerial Turnover/succes­

sion on software project performance," Journal o f Management Information Sys­

tems, Vol. 9, No. 2, Fall 1992, pp. 127-144.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

234
[9] T. K. Abdel-Ham id, "Thinking in circles," American Programmer, Vol. 6, No. 5,

May 1993, pp. 3-9.

[10] T. K. Abdel-Ham id, "A multiproject perspective of single-project dynamics,"

Journal o f Systems and Software, Vol. 22, No. 3, Septem ber 1993, pp. 151-165.

[11] T. K. Abdel-Ham id, "The slippery path to productivity im provem ent," IEEE

Software, Vol. 13, No. 4, July 1996, pp. 43-52.

[12] M. Aoyama, "Concurrent developm ent of software systems: a new develop­

m ent paradigm ," Software Engineering Notes, Vol. 12, No. 3, July 1987,

pp. 20-24.

[13] M. Aoyama, "D istributed concurrent developm ent of software systems: an

object-oriented process model," Proceedings of 14th Annual International

Com puter Software and Applications Conference, IEEE C om puter Society

Press, Los Alamitos, CA, 1990, pp. 330-337.

[14] M. Aoyama, "Concurrent developm ent process m odel," IEEE Softivare, July

1993, pp. 46-55.

[15] M. Aoyama, "M anagem ent of distributed concurrent developm ent for large-

scale software system s," Proceedings of the 1995 Asia Pacific Software Engi­

neering Conference, IEEE Com puter Society Press, Los Alamitos, CA, 1995,

pp. 158-167.

[16] M. Aoyama, "Beyond software factories: concurrent-developm ent process

and an evolution of software process technology in Japan," Information and

Software Technology, Vol. 38,1996, pp. 133-143.

[17] M. Aoyama, "Sharing the design inform ation in a distributed concurrent

developm ent of large-scale software systems," Proceedings of 20th Annual

International Com puter Software and Applications Conference, pp. 168-175.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

235
[18] M. Aoyama, "Agile software process m odel," Proceedings 21st A nnual Inter­

national C om puter Software and Applications Conference, IEEE Com puter

Society, Los Alamitos, CA, pp. 454-9.

[19] M. Aoyama, "M anaging the concurrent developm ent of large-scale software

system s," International Journal of Technology Management, Vol. 14, N os 6 /7 /8 ,

pp. 739-765.

[20] M. Aoyama, interview w ith Aoyama and three other Fujitsu senior engi­

neers, July 14-16,1998.

[21] J. D. Blackburn, G. Hoedemaker, and L. N. van Wassenhove, "Concurrent

software engineering: prospects and pitfalls," IEEE Transactions on Engineer­

ing Management, Vol. 43, No. 2, May 1996, pp. 179-188.

[22] B. Boehm, Softivare engineering economics, Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1981.

[23] B. Boehm, B. Clark, E. Horowitz, C. W estland, R. Madachy, R. Selby, "Cost

m odels for future software life cycle processes: COCOMO 2.0," Annals of

Softivare Engineering, Vol. 1,1995, pp. 45-60.

[24] F. P. Brooks, Jr., The mythical man-month, Addison-Wesley, 1995.

[25] P. G. Brown, "QFD: echoing the voice of the customer," AT& T Technical Jour­

nal, Vol. 70, No. 2, March-April 1991, pp. 18-32.

[26] M. E. Bush and N.E. Fenton, "Software m easurem ent: a conceptual frame

w ork," Journal o f Systems and Softivare, Vol. 12,1990, pp. 223-231.

[27] C A LS/C oncurrent Engineering Task Group, "First principles of concurrent

engineering: a competitive strategy for electronic system developm ent,"

Review Draft, W ashington D.C., CALS Industry Steering Group, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

236
[28] K. B. C lark and T. Fujimoto, "Overlapping problem solving in product devel­

opm ent," in Ferdows, K., ed., Managing International Manufacturing, N orth-

Holland, 1989, pp. 127-152.

[29] Center for Software Engineering, "COCOMO II m odel definition m anual:

version 1.4," C om puter Science Department, University of Southern Califor­

nia, http://sunset.edu/Cocomo.html, 1997.

[30] K. G. Cooper, "The rew ork cycle: benchmarks for the project manager,"

Project Management Journal, Fall 1993, pp. 8-12.

[31] K. G. Cooper and T. W. Mullen, "Swords and plowshares: the rew ork cycles

of defense and commercial software developm ent projects," American Pro­

grammer, Vol. 6. No. 5, M ay 1993, pp. 41-51.

[32] M. I. Elboushi and J.S. Sherif, "Object-oriented softw are design utilizing

Quality Function Deployment," Journal o f Systems and Software, Vol. 38, No. 2,

A ugust 1997, pp. 133-143.

[33] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design pro­

cess for large system s," Communications o f the ACM, Vol. 31, No. 11, 1988,

pp. 1268-1287.

[34] M. A. Cusum ano and R. W. Selby, Microsoft secrets: how the world's most power-

fid softivare company creates technology, shapes markets, and manages people, Free

Press, 1995.

[35] M. A. Cusum ano and R. W. Selby, "H ow Microsoft builds software," Commu­

nications o f the ACM , Vol. 40, No. 6, June 1997, pp. 53-61.

[36] J. W. Forrester, Industrial dynamics, The MIT Press, Cam bridge, MA, 1961.

[37] L. Garber and D. Sims, "In pursuit of hardw are-software codesign," IEEE

Computer, June 1998, pp. 12-14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sunset.edu/Cocomo.html

www.manaraa.com

237
[38] R. L. Gordon and J. C. Lamb, "A dose look at Brooks' Law," Datamation, June

1977, pp. 81-86.

[39] S. H aag and R Hogan, "Research issues in software quality function deploy­

ment: a new beginning for software engineering m ethodologies," Proceed­

ings Decision Sciences Institute '92, DSI, Atlanta, GA, 1992, pp. 926-928.

[40] S. Haag, M.K. Raja, and L.L. Schkade, "Quality function deploym ent usage

in software development," Communications o f the ACM , January 1996, Vol. 39,

No. 1, pp. 41-49.

[41] J. R. Hartley, Concurrent engineering: shortening lead times, raising quality and

lowering costs, Cambridge, MA: Productivity Press, 1992.

[42] K. Homer, "M ethodology as a productivity tool," in Software Engineering Pro­

ductivity Handbook, J. Keyes, ed., 1993, pp. 45-60.

[43] ithink analyst Technical Documentation, H igh Perform ance Systems, Inc.,

1996.

[44] E. Jandourek, "A m odel for platform development," Hewlett-Packard Journal,

August 1996.

[45] C. Jones, Programming productivity, McGraw-Hill Book Co., N ew York, 1986.

[46] K. Karoui, R. Dssouli, and O. Cherkaoui, "Specification transform ations and

design for testability," Proceedings of the 1996 IEEE Global Telecommunica­

tions Conference, Vol. 1, 1996, IEEE Com puter Society, Piscataway, NJ,

pp. 680-685.

[47] J. C. Kelly, J. S. Sherif, and J. Hops, "A n analysis of defect densities found d u r­

ing software inspections," Journal of Systems and Software, 17, 1992,

pp. 111-117.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

238
[48] C. Y. Lin and R. R. Levary, "Com puter-aided software developm ent process

design," IEEE Transactions o f Softivare Engineering, Vol. 15, No. 9, Septem ber

1989, pp. 1025-1037.

[49] C. Y. Lin, "W alking on battlefields: tools for strategic softw are m anagem ent,"

American Programmer, Vol. 6. No. 5, May 1993, pp. 33-40.

[50] C. Y. Lin, T. A bdel-H am id, and J. S. Sherif, "Software-engineering process

sim ulation m odel (SEPS)," Journal o f Systems and Softivare, Vol. 38, 1997,

pp. 263-277.

[51] J. C. Lin, R L. an d S.C. Yang, "Prom oting the software design for testability

tow ards a partial test oracle," Proceedings of the 1997 8 th IEEE International

W orkshop on Software Technology and Engineering Practice, STEP, 1997,

IEEE C om puter Society, Los Alamitos, CA, pp. 209-214.

[52] R. Madachy, A softw are project dynamics m odel for project cost, schedule

and risk assessm ent, Ph.D. dissertation, D epartm ent of Industrial and Sys­

tems Engineering, USC, December 1994.

[53] R. J. Madachy, "System dynamics m odeling of an inspection-based process,"

Proceedings of the 18th International Conference on Software Engineering,

IEEE C om puter Society Press, Los Alamitos, CA, 1996, pp. 376-386.

[54] J. Martin, Rapid application development, MacMillan, 1991.

[55] J. McCarthy, Dynamics o f softivare development, Microsoft Press, 1995.

[56] S. C. McConnell, Code complete: a practical handbook o f softivare construction,

Microsoft Press, R edm ond, WA, 1993.

[57] S. C. McConnell, Rapid development: taming ivild softivare schedules, M icrosoft

Press, Redm ond, WA, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

239
[58] G. J. Myers, "A controlled experiment in p rogram testing and code walk

through/inspections," Communications o f the ACM , Vol. 21, No. 9, September

1978, pp. 760-768.

[59] R. J. Muller, Productive objects-an applied softivare project management frame­

work, M organ K aufm ann Publishers, Inc., San Francisco, CA, 1998.

[60] B. Prasad, Concurrent engineering fundamentals, Prentice Hall, PTR, 1996.

[61] R. S. Pressman, Softivare engineering; a practitioner's approach, 4th edition,

McGraw-Hill, 1997.

[62] P. Pulli and R. Elmstrom, "IPTES: a concurrent engineering approach for

real-time software development," Real-Time Systems, Vol. 5, 1993,

pp. 139-152.

[63] P. J. Pulli and M. P. Heikkinen, "Concurrent engineering for real-time sys­

tems," IEEE Softivare, Vol. 10, Nov. 1993, pp. 39-44.

[64] L. H. Putnam and W. Myers, Industrial strength softivare: effective management

using measurement, IEEE Com puter Society Press, Los Alamitos, CA, 1997.

[65] F. Rafii and S. Perkins, "Internationalizing software w ith concurrent engi­

neering," IEEE Softivare, Vol. 12, No. 5, Septem ber 1995, pp. 39-46.

[66] M. R am achandran and W. Fleischer, "Design for large scale software reuse:

an industrial case study," Proceedings of the 4th In ternational Conference on

Software Reuse, IEEE Com puter Society, Los Alamitos, CA, 1996,

pp. 104-111.

[67] A. Rosenblatt and G. F. Watson, "Concurrent engineering," IEEE Spectrum,

July 1991, pp. 22-37.

[68] A. Rodrigues and T. Williams, "System dynam ics in softw are project m an­

agement: tow ards the developm ent of a form al in tegrated fram ework," Pro­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

240
ceeding of the 1996 International System Dynamics Conference, July 21-25,

Cambridge, MA.

[69] S. G. Shina, Concurrent engineering and design for m anufacture of electronic

products, New York: Van N ostrand Reinhold, 1991.

[70] R. Thackeray and G. van Treeck, "Applying quality function deploym ent for

software product developm ent," Journal o f Engineering Design, Vol. 1, No. 4,

1990, pp. 389-410.

[71] T. L. Tran, "QFD application to a software-intensive system developm ent

project," Proceedings of the 1996 IEEE International Engineering M anage­

m ent Conference, IEEE Piscataway, NJ, pp. 683-689.

[72] T. L. Tran and J.S. Sherif, "Q uality function deploym ent (QFD): an effective

technique for requirem ents acquisition and reuse," Proceedings of the 2nd

IEEE International Software Engineering Standards Sym posium , IEEE Com­

puter Society, Los Alamitos, CA, pp. 191-200.

[73] H. T. Yeh, "Re-engineering a software developm ent process for fast delivery-

approach & experiences," Proceedings of the First International Conference

on the Software Process, IEEE Com puter Society Press, Los Alamitos, CA,

1991, pp. 106-112.

[74] R. T. Yeh, "Notes on concurrent engineering," IEEE Transactions on Knowledge

and Data Engineering, Vol. 4, No. 5, October 1992, pp. 407-414.

[75] D. B. Simmons, N.C. Ellis, H. Fujihara, and W. Kuo, Softivare measurement: A

visualization toolkit for project control and process improvement, Prentice-Hall,

Inc., U pper Saddle River, NJ, 1998.

[76] R. P. Smith, "The historical roots of concurrent engineering fundam entals,"

IEEE Transactions on Engineering Management, Vol. 44, No. 1, February 1997,

pp. 67-78.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

241
[77] P. J. Starr, "M odeling issues and decisions in system dynam ics," TIMS Studies

in the Management Science, Vol. 14,1980, pp . 45-59.

[78] J. L. Turino, Managing concurrent engineering: buying time to a market: a defini­

tive guide to improved competitiveness in electronics design and manufacturing,

N ew York: Van Nostrand Reinhold, 1992.

[79] J. D. Tvedt and J. S. Collofello, "Evaluating the effectiveness of process

improvements on software developm ent cycle time via system dynamics

m odeling," Proceedings of the 19th A nnual International C om puter Soft­

w are and Applications Conference, 1995, pp. 318-325.

[80] J. D. Tvedt, An extensible model for evaluating the impact o f process improvements

on softivare development cycle time, Ph.D. dissertation, Arizona State Univer­

sity, May 1996.

[81] D. M. Weiss, "Evaluating software developm ent by error analysis," Journal o f

Systems and Softivare, Vol. 1,1979, pp. 57-70.

[82] N. W hitten, Managing softivare development process: formula for success, second

edition, John Wiley & Sons, Inc., 1995.

[83] H. P. E. Vranken, M. F. Witteman, and R. C. van W uijtswinkel, "D esign for

testability in hardware-software system s," IEEE Design & Test of C om put­

ers, Vol. 13, No. 3, FaH 1996, pp. 79-87.

[84] G. M. Weinberg, Quality softivare management: Volume 1, system thinking, Dor­

set H ouse Publishing, 1992.

[85] R. I. Winner, J. P. PenneH, H. E. Bertrend, and M. M. G. Slusarczuk, The role

of concurrent engineering in weapons system acquisition. IDA Report R-338,

Alexandria, VA: Institute for Defense Analyses, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

242
[86] B. J. Z irger and J. L. Hartley, "The effect of acceleration techniques on p ro d ­

uct developm ent time," IEEE Transactions on Engineering Management, Vol.

43, No. 2, M ay 1996, pp. 143-152.

[87] R. E. Zultner, "Software quality [function] deploym ent," ASQC Q uality Con­

gress Transactions, 1989, pp. 558-563.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIOGRAPHICAL INFORMATION

C hih-tung H su received the degree of Bachelor of Science in Civil Engineering from

N ational Chiao Tung University, Taiwan, in 1986, the degree of M asters of Science in

Mechanical Engineering from Tamkang University, Taiwan, in 1988, the degree of Masters

of Science in Com puter Science and Engineering from The University of Texas a t A rlington

on December 1992, and the degree of Doctor o f Philosophy in C om puter Science and Engi­

neering from The University of Texas a t Arlington in 1999.

H e received an outstanding research by a Ph.D. student aw ard in 1998. H e has pub­

lished eight technical papers in the areas of software incremental delivery, object-oriented

developm ent and testing m ethodologies, and system dynamics m odeling during his Ph.D

study.

H e taught classes while he was w orking for his Ph.D. degree, including software engi­

neering, object-oriented software engineering, algorithm s and data structures. His research

interests include system dynamics software process modeling, techniques for software

requirem ents specification, and m ethodologies for object-oriented software developm ent

and testing.

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

