INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9° black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A SYSTEM DYNAMICS MODEL FOR CONCURRENT

SOFTWARE ENGINEERING

The members of the Committee approve the doctoral
dissertation of Chih-tung Hsu

Pei Hsia s
Supervising Professor

) v
77X /
David C. Kung ﬂw M
Z
Bob P. Weems @v / ﬁw
4
Lawrence B. Holder 7‘;4,«««—-«(B ZLL%\,
Piotr J. Gmytrasiewicz ;/M ; M
7
Dean of the Graduate School _MMW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright © by Chih-tung Hsu 1999

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A SYSTEM DYNAMICS MODEL FOR CONCURRENT
SOFTWARE ENGINEERING

CHIH-TUNG HSU

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9948006

Copyright 1999 by
Hsu, Chih-tung

All rights reserved.

®

UMI

UMI Microform9948006

Copyright 2000 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First of all, I would like to express my deep appreciation to my thesis supervi-
sor, Dr. Pei Hsia, for his enduring guidance, encouragement, and support through-
out the years. My special thanks to Dr. David Kung for his guidance and support in
the past few years.

I would like to acknowledge Dr. Bob Weems, Dr. Lawrence Holder, and Dr.
Piotr Gmytrasiewicz for serving on my Ph.D. committee and providing guidance. I
took three courses from Dr. Weems, two courses from Dr. Holder, and have assisted
Dr. Gmytrasiewicz in the past. Their teaching attitudes and abilities have motivated
me to become a good teacher.

Special thanks to Professor Mikio Aoyama and his colleagues at Fujitsu,
Kawasaki, Japan, for sharing with me their experience in concurrent software devel-
opment projects. And special thanks to my best friend Pei-ching for reviewing and
editing the thesis.

Finally, I would like to express my deep gratitude to my parents for their
understanding and everlasting love and support and to my sisters, Coco and Abby,
and their families, for their love and enduring support. I could not have done it

without them.

May 12, 1999

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A SYSTEM DYNAMICS MODEL FOR CONCURRENT
SOFTWARE ENGINEERING

Publication No.

Chih-tung Hsu, Ph.D.

The University of Texas at Arlington, 1999

Supervising Professor: Pei Hsia

Concurrent engineering (CE) has been widely adopted and has made
significant contributions to the electronics and manufacturing industries in terms
of project cost and cycle time reduction, as well as product quality improvement.
The software development industry has begun to learn from the CE experiences as
practiced in other industries. Several software companies have significantly
reduced their product cycle time by applying a modest degree of concurrent
engineering; for example, Fujitsu's Concurrent Development model, Microsoft's
Daily Build process, HP's Platform Development model, concurrent
internationalization of software products for local markets, and DuPont's Timebox
approach.

Concurrent software engineering (CSE) shortens time-to-market but creates
new problems in terms of coordinating multiple, concurrent activities. The extent
of benefits that CSE-based practices can deliver, their critical success factors, and

the potential high risk areas need to be assessed carefully.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This research aims to develop a system dynamics simulation model (CSE-SD)
to systematically assess the benefits and drawbacks of CSE. We made three major
contributions in this research: (1) we have classified different types of CSE
practices; (2) we have identified the specific benefits, potential risks, and the
dynamic cause-effect implications of different types of CSE practices; and (3) we
have studied three sets of questions using this system dynamics model. The results
of our study provide strategic information for software project managers who
attempt concurrent software development.

The CSE-SD model is an economic and effective management policy
exploration tool for pre-assessing the benefits and potential risks of future projects.
By calibrating the simulation model against the data collected from previous
projects, it can be used to predict the possible outcomes of different management

policies, actions, or decisions.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT e

LISTOFFIGURES i

LIST OF TABLES e
Chapter

1. INTRODUCTION i

11 Motivation i

1.2 Objectives and Expected Significance

1.3 Research Approach

1.4 OrganizationoftheThesis

2. BACKGROUND ... i

21 Introductionl

2.2 Concurrent Engineering

2.2.1 Definition of Concurrent Engineering 6

2211 ConCurrency.covvviiinneninnnn...

2212 Integration

2.2.1.3 InformationSharing.

2214 QualityFocus

2.2.2 CE-based Process Improvement

2221 CycleTime Reduction

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o NN« N o N N S

10
11
12
12
13

2.2.2.2 Quality Improvement

2223 CostReduction

2.3 Concurrent Software Engineering
231 CONCUITENCY . . o oot e e it ieie e e ee e ieee i
232 Integration
2.3.3 InformationSharing
234 QualityFocus.........l
2.3.5 Concurrent Software Engineering Framework.

2.4 System Dynamics i,

3. CONCURRENT SOFTWARE ENGINEERING
FRAMEWORK ... e e

31 Introduction
32 ARAWModel
3.3 A (lassificationof CSEModels
331 Type1ConCurrencycouevmiemuneeennnnnnn.
332 Type2ConCurrencyoeueninennnnannannc..
333 Type3 CONCUITENCY ... nvviiiiiiiiiii i eaennn
3.34 TypeOConcurrencyc.ovveiemuneennnnnnnnn.
3.4 State-of-the-Practice CSE Practices
3.4.1 Concurrent DevelopmentModel
3.4.2 Concurrent Internationalization
3.4.3 Platform DevelopmentModel
3.4.4 Parallel Timebox Development
3.4.5 Hardware-Software Codesign

viil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
15
16
16
17
18
18
19
21

24
24
24
27
28
28
30
31
32
33
34
36
38
39

34.6 TheIPTES Approach

3.4.7 Microsoft Daily Build Process

4. ASYSTEM DYNAMICSMODEL
41 Introduction ool e

4.2 Dynamics of Concurrent Software Engineering
421 PhaseOverlapping

4.2.2 Synchronous Concurrent Subsystems

4.2.3 Asynchronous Concurrent Subsystems

424 Cross Function Integration

43 Model Structure

4.4 Comparison with Other Related SD Models
441 Abdel-Hamid and Madnick

442 JPL . e

443 Madachy il

444 Collofelloand Tvedt

5. MODELTESTING
51 Introduction

52 UnitTestingcoouniimriiiiiii i

53 SystemTestingot

6. BROOKS' LAWREVISITED,
6.1 Introductionl

6.2 Related Studieson Brooks’ Law

6.3 Dynamics of Brooks’Law L

6.4 SimulationResults e

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. ON THE IMPACT OF CONCURRENT
SOFTWARE ENGINEERING,

71 Introducton e e
7.2 Model Calibration i
7.2.1 The BASELNE Software Project

7.2.2 Mapping COCOMO Development
ActivitiestoCSE-SD

7.2.3 Calibrate CSE-SD Against COCOMO

7.3 Impact of Phase Overlapping
7.3.1 Modeling Phase Overlapping

7.3.2 Modeling Requirements Changes

7.3.3 SimulationResults

7.4 Impact of Synchronous Concurrent Subsystems
7.4.1 Determining Communication Overhead

7.4.2 Interteam Interactions

74.3 ExperimentationSetting

7.4.4 SimulationResults e

8. CONCLUSIONS AND FUTUREWORK
8.1 Contributions of the Research
8.2 ImportantFindingsl
8.21 Brooks'Lawl

8.2.2 Impact of Phase Overlapping

8.2.3 Impact of Synchronous Concurrent
subsystems iiiiiiia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

115
115

116 .

116

117
122
126
127
128
131
137
138
140
143
147
154
154
155
156
157

157

83 Future Work
Appendix
A. CSE-SD MODEL SPECIFICATION
B. CSE-SD MODEL EQUATIONS
C. KEY STATISTICS OF THE EXAMPLE PROJECT

REFERENCES

...

..............................

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160
201
231
233
243

LIST OF FIGURES

Figure
2.1. Traditional sequential engineering
2.2, Concurrentengineering

2.3. A fishbone diagram for the reasons of CE-based

process improvementiioiiiiiiiii
24. The Blackburn CSE framework
3.1. A conceptual resource-activity-work productmodel
32, Typel CONCUITENCY . ..oitnnieie i
33. Type2CONCUITENCYitniniee it
34. Type3 CONCUITENCY\.unin ittt eiiee i,
3.5. TypeOcCONCUITENCYniiiini it
3.6. The Fujitsu concurrent development model
3.7. Concurrent internationalization of global

softwareproducts il
3.8. The platform developmentmodel
3.9. The parallel timebox development practice
3.10. Hardware-softwarecodesign
3.11. TheIPTESapproachot
3.12. The Microsoft daily build process
41. Dynamics of phase overlapping e
4.2. Dynamics of synchronous concurrent subsystems
4.3. Dynamics of asynchronous concurrent subsystems
4.4. Dynamics of cross function integration
45. Overview of the CSE-SDmodel

Xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1. Project progress of a perfect project

5.2. Adjusting the planned project effort when there is a
reported gap between the perceived project effort
needed to complete the project and the remaining
projecteffortl

5.3. Nominal and actual development defectrate

5.4. The impact of defect density on development
defects generationl

5.5. The impact of workforce mix on development
defects generation

5.6. The impact of schedule pressure on
development defects generation

5.7. Projectscopechange i,
58. Trainingtime
59. Slacktimeandovertime i,
5.10. Learning effect on staff productionrate

5.11. The impact of staff exhaustion level on
staff productionratel

5.12. The effect of schedule pressure on
staff productionratel

5.13. Comparison of project progress of
the EXAMPLE project

5.14. Comparison of project cost of
the EXAMPLE projectoiiiiiiiiiiiiiinnn..

5.15. Comparison of scheduled completion
date of the EXAMPLE project

5.16. Comparison of work force distribution
of the EXAMPLE project i,

6.1. Thedynamicsof Brooks"'Law

6.2. Modeling sequential constraint

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3. The impact of work force stability on

project durationandcost 108
6.4. The impact of degree of concurrency on

project durationandcost 110
6.5. Impact of restaffing time on project duration, cost,

and number of needed work force 112
7.1. Planned work force distribution, 123
7.2. Staffing planstability 124
7.3. Comparison of FTE software personnel distribution cee.. 124
7.4. Comparison of cumulative projecteffort 126
7.5. Modeling phaseoverlapping 128
7.6. Reworkcostratiol 130
7.7. Three patterns of requirementschange 130
7.8. Project duration increase due to requirements changes 133
7.9. Project effort increase due to requirements changes 134
7.10. The effects of phase overlapping on project effort

and developmentcycletime 136
7.11. Determining the overall communication overhead 139
7.12. Intrateam and interteam communication overheads 140
7.13. Interteam interference amplification 142
7.14. Interteam-to-intrateam communicationratio 144

7.15. Project size change due to resolution of
interteam interferences i 145

7.16. Project duration vs. number of teams

(low communicationratioM1) 151
7.17. Project effort vs. number of teams

(low communicationratioM1)l 151
7.18. Project duration vs. number of teams

(medium communicationratioM2) 152

Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.19. Project effort vs. number of teams
(medium communicationratioM2)

7.20. Project duration vs. number of teams
(high communicationratioM3),

7.21. Project effort vs. number of teams
(high communicationratioM3)

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page
4.1. Major components of the CSE-SDmodel 62

7.1. Phase distribution of project effort,
scheduleand personnelo, 117

7.2. The breakdown of project effort, schedule, and
personnel in the “Plan and Requirements” phase 119

7.3. The breakdown of project effort, schedule, and
personnel in the “Product Design” phase 119

74. The breakdown of project effort, schedule, and
personnel in the “Programming” phase 120

7.5. The breakdown of project effort, schedule, and

personnel in the “Integration and Test” phase 120
7.6. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK=0% 120
7.7. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK=10% 121
7.8. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK=20% 121
7.9. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK=25% 121
7.10. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK=30% 122

Xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.11. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK=40%

7.12. Comparison of project effort (person-days)

7.13. Nominal project (R1xD1) with different
requirements change patterns L.

7.14. Modest phase overlapping (R2xD2) with different
requirements change patterns

7.15. Aggressive phase overlapping (R3xD2) with
different requirements change patterns

XVil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

125

134

135

135

CHAPTER1
INTRODUCTION

1.1 Motivation

Concurrent engineering (CE) has been widely adopted and has made
significant contributions to the electronics and manufacturing industries in terms of
project cost and cycle time reduction, as well as product quality improvement. The
software development industry has begun to learn from the CE experiences as
practiced in other industries. Several software companies have significantly reduced
their project development cycle time by applying a modest degree of CE; for
example, Fujitsu’s Concurrent Development model [12-19], Microsoft’s Daily Build
process [34-35], HP’s Platform Development model [44], concurrent
internationalization of software product for local markets [65], and DuPont’s
Timebox approach [54].

Concurrent software engineering (CSE) shortens time-to-market but creates
new problems in terms of coordinating multiple, concurrent activities. The extent of
benefits that CSE-based practices can deliver, their critical success factors, and the

potential high risk areas need to be assessed carefully.

1.2 Objectives and Expected Significance
The overall objectives of this research are: (1) to classify the unconventional
software development paradigms according to their concurrent software

engineering characteristics; and (2) to construct a system dynamics model for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
assessing the benefits, and drawbacks, if any, of concurrent software engineering in

terms of project cost and development cycle time reduction.

Concurrent engineering (CE) principles have been adopted widely and with
great success in the manufacturing industry. Although some CE principles are
being cautiously adopted by software producers, the potential benefits of CE may
not be fully realized in the software industry. We expect that this research will
construct a comprehensive system dynamics model (called CSE-SD) that allows us
to systemnatically assess the benefits and potential risks in adopting CE principles in
software development. It will advance the state of the art and practice of concurrent
software engineering and substantially improve current software development
practices in terms of project cost and development cycle time reduction.

By calibrating the system dynamics simulation model against the data
collected from previous projects, the proposed model can be used as a management
policy exploration tool for future projects. The model can help project managers
predict the possible outcomes of different management policies, actions, or
decisions. The proposed concurrent software engineering system dynamics (CSE-
SD) model can be employed to answer questions such as: “What is the impact of
concurrent development on project cost and development cycle time?”; “Will
concurrent development reduce project cost and development cycle time?”; “Under
what situations will concurrent development have the most leverage?”; “How
many concurrent development teams are suitable for the project?”; and, “What is

the optimal degree of concurrency in terms of project duration and cost?”

1.3 Research Approach
In software engineering, it is remarkably easy to propose hypotheses and

remarkably difficult to test them. Accordingly, it is useful to seek methods for testing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
software engineering hypotheses [81]. Unfortunately, conducting experiments in the

area of software development is costly and time-consuming [58]. Conducting exper-
iments in software is difficult and problematic for several reasons. First, software
development is a complex process, involving numerous factors which do not remain
constant throughout the period of experimentation. It is difficult to control one factor
while keeping all other factors constant. Second, while the results derived from an
experiment might be meaningful and useful to a specific environment and context, it
is not generally applicable to other environments and contexts. Third, controlled
experimentation is not feasible for large-scale projects due to the exponential growth
in the number of factor combinations as the number of factors under study increases.
Studying the impact of a new software development methodology and/or process
on schedule, quality, and cost in the development of a large-scale system is infeasi-
ble, although not impossible. Finally, participating engineers generally have to
spend extra time reporting measurements, which takes away from the time they
spend on productive work.

In this research, we use the System Dynamics (SD) simulation approach to
study the impact of concurrent software engineering on project cost and develop-
ment cycle time. System Dynamics refers to a quantitative method to investigate the
dynamic behavior of socio-technical systems and their responses to policy [77]. It
was developed by Jay Forrester in 1961 and, since then, has been applied to many
different fields. A review of the approach and its application in software project
management is presented in chapter 2.

Simulation models, like empirical cost-estimation models, can be used to pre-
dict the schedule and cost for future projects to be developed, once the models are
calibrated against specific development environments and organizations. In a simu-

lation-based experiment, the effect of changing one factor can be observed while all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
other factors are held unchanged. Software project managers can easily assess the

impact of different development strategies and policies simply by changing the val-
ues of individual model parameters [7].

The proposed system dynamics model is calibrated according to three different
sources: (1) industrial or experimental data published in the literature; (2) interviews
with project managers in Fujitsu, and (3) data derived from the COCOMO cost esti-
mation model.

The proposed system dynamics model CSE-SD can be used: (1) to simulate the
proposed development process and various software project management policies;
(2) to test the impact of various assumptions, scenarios, and environmental factors
on the software development process; (3) to predict the consequences of manage-
ment actions on the interrelationships among software development process compo-
nents and flows, and (4) to examine the sensitivity of the software development

process to various internal and external factors [48].

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents funda-
mental principles of concurrent engineering as practiced in the manufacturing
industry and identifies main reasons why they improve the hardware development
process. Related work on the system dynamics approach and concurrent software
engineering practices are briefly reviewed in this chapter.

Chapter 3 presents a systematic classification of various concurrent software
engineering practices based on a proposed resource-activity-work product (RAW)
model. A detailed review of the state-of-practice concurrent software engineering

practices based on the RAW is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5
Chapter 4 presents a system dynamics model for evaluating the impact of con-

current software engineering practices. The benefits, potential risks, and critical fac-
tors, as well as the dynamic cause-effect interrelationships of each type of CSE, are
discussed. These dynamic cause-effect relationships serve as the basis from which
the proposed system dynamics model is developed. Finally, four related software
project system dynamics models are reviewed and compared.

The results of model testing are presented in chapter 5. Model testing is per-
formed in two steps: unit-level testing and system-level testing. Unit-level testing
concerns the correctness of individual model sectors, while system-level testing inte-
grates and tests all model components. The model-simulated behaviors are com-
pared with those of the Abdel-Hamid and Madnick model [7].

In chapters 6 and 7, we conduct a set of simulation experiments to further dem-
onstrate the capability of CSE-SD in generating useful information and insights for
software project managers. Chapter 6 addresses the issue of project restaffing, and
testing the validity of Brooks’ Law. Specific questions addressed in chapter 7
include: (1) the impact of the phase overlapping concurrent development approach on
project cost and development cycle time; and (2) the impact of the synchronous con-
current subsystems development approach on project cost and development cycle
time.

The results of this research are concluded and summarized in chapter 8. A
number of questions and issues that merit further study are also discussed. A
detailed specification of the CSE-SD model, including formal model equations, is

given in appendices A and B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2
BACKGROUND

2.1 Introduction

In this chapter we present fundamental principles of concurrent engineering as
practiced in the manufacturing industry and identify the main reasons why they
improve the hardware development process. Related work on the system dynamics
approach and concurrent software engineering practices and framework are briefly
reviewed in this chapter. A more detailed presentation of the state-of-practice con-
current software engineering practices based on a proposed resource-activity-work
product (RAW) model is included in chapter 3. Related software project system
dynamics models are compared with the proposed CSE-SD model in chapter 4.

2.2 Concurrent Engineering
In this section, we review and define concurrent engineering and examine the

reasons for CE-based process improvements.

2.2.1 Definition of Concurrent Engineering

Since it became a recognized technique in the mid-1980s, concurrent engineer-
ing (CE) has made significant contributions to the electronics and manufacturing
industries in terms of project cost and cycle time reduction, as well as product quality
improvement. Unfortunately, there is no well-accepted definition of CE. Some
researchers describe CE as a parallel design approach, while others emphasize the

cross-functional design team approach. For others, CE simply refers to a group of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7
sound principles, contemporary techniques and novel methodologies that help

improve the product development process. Some of the most-cited definitions of CE

are:

1. Concurrent engineering is a systematic approach to the integrated, concurrent
design of products and their related processes, including manufacture and sup-
port. This approach is intended to cause the developers, from the outset, to con-
sider all elements of the product lifecycle, from conception through disposal,
including quality, cost, schedule, and user requirements [85].

2. The Computer-aided Acquisition and Logistics Support program (CALS) defini-
tion of CE is “a systematic approach to creating a product design that considers
all elements of the product life cycle, from conception to disposal. CE defines
simultaneously the product, its manufacturing process, and all other required
life-cycle processes, such as logistic support. CE is not the arbitrary elimination of
a phase of the existing, sequential, feed-forward engineering process, but rather
the co-design of all downstream processes toward a more all-encompassing, cost-
effective optimum. Concurrent engineering is an integrated design approach that
takes into account all desired downstream characteristics during upstream
phases to produce a more robust design that is tolerant of manufacturing and use
variation, at less cost than sequential design [27].

3. CE is a goal-directed effort, where “ownership” is assigned mutually among the
entire group on the “total job” to be completed, not just a “piece” of it, with the
understanding that the team is empowered to make major design decisions along
the way [78].

4. CE is a product development methodology where up-front “X-abilities” (such as
manufacturability, serviceability, and quality) are considered part of the product

design and development process. X-abilities are not merely for meeting the basic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
functionality or a set of limited strategies, but for defining a product that meets

all the customer requirements [69].

5. Concurrent engineering is a term that has been applied since the 1980s to the
product development process where, typically, a product design and its manu-
facturing process are developed simultaneously, cross-functional groups are used
to accomplish integration, and the voice of the customer is included in the prod-
uct development process [76].

The above frequently cited definitions of CE and others ([41], [60]) spell out
four key characteristics of concurrent engineering: concurrency, integration, infor-

mation sharing, and quality focus.

2.2.1.1 Concurrency

The trademark characteristic of CE is activity concurrency. In traditional prod-
uct development projects, each stage of the project is done sequentially, with the
functional groups “handing-off” the project to one another after ar extensive stage-
gate evaluation process [85]. A generic traditional sequential engineering (SE) pro-
cess is shown in figure 2.1. In SE, the product design group, upon receipt of a com-
plete product specification from the marketing department, performs product
design in an environment isolated from all other departments. Only after a design is
verified, either by simulation or hardware prototyping or both, is it handed off to
manufacturing, test, quality, and service engineers for review [67].

Design flaws and test failures detected during manufacturing are reported
back to the product design department for diagnostics. The product design group
reworks the design and “tosses it over the wall” to the manufacturing department.
This redo-until-right practice, involving many toss-it-over-the-wall rework itera-

tions, usually is a lengthy and costly process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
CE replaces SE with simultaneous performance of activities. Concept develop-

ment, product design, and process design are performed at the same time. As shown
in figure 2.2, all downstream issues such as manufacturability, quality, serviceability,
product performance, cost, and other downstream X-abilities are considered early in
the product design stage. The “do-it-right-the-first-time” philosophy of CE replaces
the lengthy “redo-until-right” philosophy as practiced in SE.

’ E
Product . Pro.cess
Marketing *1 Design am{ Prototype E Review =g MaDes;gn/ Test
nufacture
‘ ‘ Functional ‘ ‘
H Wall H
L ettt Design group= === === == e Manufacturing department = = = = ===

Figure 2.1. Traditional sequential engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Downstream
X-abilities

rd Serviceability

4 Performance

Product
Design

- Prototype - Review }——amt-Manufacture —4» Test

= Manufacturability

= Quality

ey Cost

Figure 2.2. Concurrent engineering.

2.2.1.2 Integration

The second key characteristic of CE is integration: integration of design and
manufacturing (design-manufacturing integration) and integration of customer and
design (marketing-design integration) [76]. Integration refers to the up-front
involvement of personnel from different functional areas, including marketing,
product design, process design, manufacturing, service, or other relevant areas,
depending on the type of product.

Usually, the mechanism for accomplishing integration is the use of cross-func-
tional teams. People from many departments collaborate over the life of a product-

from idea to obsolescence-to ensure that it reflects customers’ needs and desires [67].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
Team members usually stay together physically. They are empowered to make

timely decisions in shaping the design, and are given ownership of what they pro-

duce, and are rewarded as a whole on a team basis.

2.2.1.3 Information sharing

Information sharing is another key characteristic of CE. Three forms of
information sharing take place in CE-based projects: flying start, front loading, and
two-way information exchange [21]. These three forms of information sharing are
identified based on the direction of information flows between development
phases.

Flying start is a preliminary information transfer flowing from upstream
design activities to team members primarily concerned with downstream activities.
Early release of preliminary information supports CE by enabling downstream
activities to start earlier.

Front loading is the early involvement in product design activities of
downstream issues such as manufacturing, testing, and service. Design techniques
and practices, such as design for manufacturability and assembly (DFM/DFA),
design for testability (DFT), and other design for X-abilities, specify ways and
suggest rules to design products that are easy to manufacture and test. For example,
“reducing the number of parts,” “simplifying the part mating and securing
processes,” and “creating symmetry or asymmetry so that it is difficult to put the
parts together in any manner but the correct way” are common DFA design rules
that consider downstream assembly processes early in the product design phase.

Two-way information exchange is intensive and rich communication between
teams while performing concurrent activities [21]. Teams involved in concurrent

development of different subsystems (e.g., hardware and software) need to have a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
steady flow of information among the groups to prevent potential integration prob-

lems [21].

2.2.1.4 Quality Focus

The forth key characteristic of CE is quality focus, both on the product and on
the process that produces it. CE not only is concerned with quality control of the
product, but it also focuses on continuously improving the process itself [74]. Many
techniques, such as total quality management (TQM), quality function deployment
(QFD), just-in-time manufacturing (JIT), statistical process control (SPC), and so
forth, are employed to ensure that quality standards and objectives are met. TQM
applies a set of principles to focus continucus attention on quality at every step of
design, development, and manufacturing [67]. QFD methods are designed to listen
to the voices of customers [67]. A set of matrices relating subjective customer desires
to quantitative engineering characteristics is employed to address the needs of the
customer throughout the entire product development process.

CE seeks ways to continuously improve product quality and process effective-
ness. Rather than try to find defects in finished products, statistical process control
(SPC) seeks to monitor and correct drifts in quality in the manufacturing process
[67]. CE continuously seeks ways to improve the development process (continuous

process improvement).

2.2.2 CE-based Process Improvement
The goal of concurrent engineering is to cut project cost and development cycle
time and improve product quality, all at the same time. In this section, we examine

the underlying reasons behind CE-based process improvements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
2.2.2.1 Cycle time reduction

CE reduces product development cycle time (refer to Bone 1 of figure 2.3)
mainly because of three reasons: concurrent activities (Bone 2), less rework (Bone 3),
and reacting to changes quickly (Bone 4). Activity concurrency is the major force of
concurrent engineering. Concurrency of activities has contributed significantly to
the cycle time reduction in the manufacturing industry ([67], [74]). The overall prod-
uct development cycle time is reduced because the steps along the way are handled
in parallel instead of series, as usual [67]. '

Rework is reduced mainly because of two reasons: shorter rework loop (Bone
5) and fewer requirements and design changes (Bone 6). CE shortens the rework
loop both by shortening the interval between the time defects are introduced and the
time they are detected (defect-to-correct distance, shown as Bone 7) and reducing the
number of rework iterations (Bone 8). Because of cross-function integration, prob-
lems are identified early. Rework does not need to go through the lengthy toss-it-
over-the-wall iterations t;etween design and manufacturing.

Requirements and design changes are fewer because of cross-function integra-
tion: design-manufacturing integration and design-marketing integration. Design-
manufacturing integration allows downstream issues to be considered early (Bone 9)
in the product design stage (i.e., front loading information sharing). This leads to
early problem identification, and a more robust and manufacturable design. Design
changes are reduced when product development goes to the manufacturing stage.

CE focuses on the needs of the customer early and throughout the entire devel-
opment process (Bone 10). Early and continuous involvements of customers (design-
marketing integration, or design-customer integration) help the designer and the

customer negotiate the requirements and arrive at a stable product specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
early. Usually, QFD methods (Bone 11) are designed to make sure the voice of the

customer is included in the product development process [76].

Another reason that CE reduces product development cycle time is its capabil-
ity to react quickly to changes (Bone 4). CE responds to changes quickly because of
the empowerment of decision-making authority (Bone 12) and real-time communi-
cation among team members (Bone 13). Empowerment of decision-making authority
allows team members to make timely decisions without waiting for long, upper-
management approvals.

Real-time communication is facilitated by co-located cross-functional teams
(Bone 14). In a cross-functional team setting (Bone 15), team members can discuss
different strategies to implement the project and resolve problems together, instead
of communicating across isolated functional groups. Locating team members close

together also facilitates communication.

2.2.2.2 Quality Improvement

CE improves product quality (Bone 16) because of two main reasons: customer
focus (Bone 17) and continuous process improvement (Bone 18). Quality, as defined
by the customer, is improved because of early and continual customer focus
throughout the entire development process. Customer satisfaction is maximized
because their voice is echoed in every step of the development process.

Quality products come from quality processes. To produce a quality product
that maximizes customer satisfaction and minimize negative product defects, CE
seeks ways to improve the process and focus continuous attention on quality at

every step of design, development, and manufacturing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

CYCLE TIME REDUCTION (1)
Shorter rework
loop (5} Empoweru'ent (12)
: . Shorter React to changes
Fewer iterations {8) defect-to-correct quickly (4)
distance (7)
Co-location (14
Less rework (3) Cross-function team (15)
Customer CO[Slder downstream
focus (10) - 1SSues early ly (9) oomuumcatxon (13)
Concurrent activities (2)
Fewer
QFD(19) requirements/design
changes (6)

CE-BASED
= IMPROVEMENT

Lessrework(20) Customer focus (17)

Shorter development
Lower

manufacturing/assembly cost (22) ele @
Continuous
stointi process improvement (18)
manufacturing (23) B
Design
for X-abilities (24)
QOST REDUCTION (19) QUALITY IMPROVEMENT (16)

Figure 2.3. A fish bone diagram for the reasons of CE-based
process improvement.

2.2.2.3 Cost Reduction

CE cuts project cost (Bone 19) mainly because of four reasons: less rework
(Bone 20), shorter development cycle time (Bone 21), lower downstream manufac-
turing and assembly cost (Bone 22), and just-in-time manufacturing (Bone 23).

Less rework not only contributes to the reduction of development cycle time,
but also helps to cut development cost. Design flaws are detected early in the prod-

uct design stage, and they are corrected with less cost. By focusing on the needs of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
the customer early, requirements changes and defects are reduced. With the reduced

amount of rework tasks because of fewer changes and design flaws, project cost also
is reduced.

The philosophy of “Design for X-abilities” (Bone 24) helps to produce a prod-
uct design that is easy to manufacture, assemble, and test. For example, the DFA
rules such as “reducing the number of parts” and “simplifying the part mating and
securing processes” help to simplify the assembly process. This simplification has
the effect of reducing direct assembly costs, and often tends to reduce indirect costs
such as incoming inspection and parts inventories [76].

Just-in-time (JIT) manufacturing methods provide components and assemblies
as they are needed. These components and assemblies make it unnecessary to main-

tain large inventories, and thus help to cut costs [67].

2.3 Concurrent Software Engineering

Despite its well-known problems, the sequential Waterfall model still is the
software development process model most commonly used. In this section, we
review literature that reports successes in applying CE principles to the software
engineering community. We define concurrent software engineering (CSE) as a
development process and management practice that (1) helps to cut project cost and
development cycle time, and improve product quality; and (2) possesses the four
key characteristics of CE: concurrency, integration, information sharing, and quality

focus.

2.3.1 Concurrency
Driven by the increasing pressure to bring new products to market faster, many

software companies have practiced concurrent engineering. Examples include:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17
Fujitsu’s Concurrent Development Model [12-19]; Microsoft’s Daily Build process

[34-35]; HP’s Platform Development Model [44]; concurrent internationalization of
global software development [65]; concurrent development of real-time systems [62-
63]; and Parallel Timeboxes to the development of information systems [54].

Phase overlapping, as practiced in the hardware development industry, is not
commonly practiced in software industry due to the unstable front-end of the soft-

ware development life-cycle.

2.3.2 Integration

The “walls” among different functional areas (e.g., design and manufacturing)
are taller in CE than in CSE. In CE, for example, designers (white collars) and manu-
facturers (blue collars) usually speak different domain languages, and have different
thinking and backgrounds. Software development is a more creative endeavor;
therefore, most of the participants of a software development project are white col-
lars. The differences among the different experts (e.g., requirements analysts, design-
ers, programmers) are less significant than those in CE. For example, a programmer
may do some domain analysis and analysts may do some programming (prototyp-
ing is an example).

Incorporating expertise from different disciplines in CSE is easier than in CE. A
cross-functional teaming approach has been practiced in the software development
industry. For example, Microsoft's “feature teams” practice has contributed to the
successful development and delivery of Visual C++ [55]. AT&T’s “application devel-
opment teams” approach has helped the company make on-time deliveries of multi-
ple releases of a telecommunication software system [73]. Xerox’s “chunking teams”
practice has contributed to the successful development of the Inconcert workflow

management system [1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
2.3.3 Information sharing

The “front loading” type of information sharing currently is being practiced in
the software development domain, as well. Examples include “design for testability”
([46], [51], [82]) and “design for reusability” [66]. The objectives of design for test-
ability are to reduce the cost and complexity of tests. Early consideration and estima-
tion of testability in the design phase helps designers identify parts of the
specification that are hard to test; then appropriate transformations can be proposed
to enhance testability of the end product. Designing for large-scale reuse addresses
the need for higher productivity in domain-specific application domains or product
families.

The “two-way information exchange” type of information sharing has been
practiced in software development, in particular, in firmware development. Teams
or individuals involved in concurrent development of the hardware and the soft-
ware component need to have a steady flow of information between them to prevent
potential integration problems. Use of the “flying start” type of information sharing
to support overlappirig software development, however, is not a common practice in

software development.

2.3.4 Quality Focus

Global competitiveness has forced many companies to view quality improve-
ment as a vital task [40]. Like CE, the software development industry has begun to
apply quality-oriented techniques to improve the quality of both the product and the
process. Specifically, software development organizations endeavoring to improve
the quality of software systems (by improving the quality of the software develop-
ment process) recently have adapted QFD for the development of software ([25],
[32], [39-40], [70], [71-72], [86]), especially during the requirements analysis phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19
Implementing QFD techniques to the front-end of the software development life

cycle can lead to effective communication with users, fewer design changes, and
increased analyst and programmer productivity [40].

In summary, the software development industry has recognized the potential
benefits of concurrent engineering and cautiously applied it from different aspects
and for different purposes. Phase overlapping and the “flying start” type of informa-
tion sharing, however, are not common practices in software development, because

of the unstable front-end.

2.3.5 Concurrent Software Engineering Framework

Blackburn et al. [21] proposed a framework for concurrent software
engineering based on Clark and Fujimoto’s information processing framework for
supporting overlapping problem solving activities [28]. The Blackburn framework,
as shown in figure 2.4, distinguishes four types of activity concurrency (within-
stage overlap, across-stage overlap, hardware/software overlap, and across-project
overlap) and three forms of information concurrency (front loading, flying start,
and two-way high bandwidth information exchange) [21].

Situated between activity concurrency and information concurrency are
practices of “architectural modularity” and “synchronicity.” Architectural
modularity, a critical issue for “within-stage overlap” and “across-project overlap,”
is supported by front loading. Front loading (information about possible design
changes, customer requirements, and reuse concerns) helps developers design more
robust and modular system architectures with reusable modules.

Synchronicity is identified as a critical issue for the other two forms of activity
concurrency: “across-stage overlap” and “hardware/software overlap.”

Overlapping development and firmware development increase the degree of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
coupling between overlapped phases and between hardware and software

designers. Their work must be coordinated and synchronized to avoid late
integration problems.

Poor problem decomposition and module designs increase the need for
synchronizing concurrent activities within-stage (indicated as dotted line from
synchronicity to within-stage overlap). Synchronicity is supported by all three types

of information concurrency.

Across Project
Overlap (Reuse)

Front Architectural /
Loading Modularity
_____________ - Within Stage
I Overlap
1
s
1
14
[}
Flying s Across Stage
Start Synchronicity Overlap
Two-Way Hardware/
High Bandwidth Software
Flow Overlap

Figure 24. The Blackburn CSE framework.

The Blackburn CSE framework provides a coherent framework for CSE to
move from ad hoc, reactive practices to proactive project management. However, the
Blackburn framework is not appropriate to serve as a reference framework for our
proposed system dynamics study, for two reasons. First, it considers only activity
and information flow between activities; and other important issues, such as human

resource and workload assignment, are not addressed. Second, it focuses on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21
development cycle time instead of the quality improvement and cost reduction

potential of CE.

To guide the construction of the CSE system dynamics model, a more general
and comprehensive framework is needed. In chapter 3 we classify different types of
concurrency based on a proposed resource-activity-work product model. The
benefits and potential risks of each type of concurrency are presented in chapter 4.
Then, based on the classification and cause-effect analysis of CSE, a comprehensive

system dynamics simulation model is constructed to quantitatively assess CSE.

2.4 System Dynamics

System Dynamics (SD) refers to a quantitative method to investigate the
dynamic behavior of socio-technical systems and their responses to policy [77]. The
field of system dynamics was developed initially from the work of Professor Jay w.
Forrester in 1961 [36] as Industrial Dynamics and is defined as follows:

The study of the information-feedback characteristics of industrial activity to show

how organizational structure, amplification (in policies), and time delays (in deci-

sions and actions) interact to influence the success of the enterprise [36].

Since then, the application of SD has grown extensively and now encompasses
numerous fields such as economics and finance, biology and medicine, corporate
planning and policy design, transportation, banking, politics, energy and environ-
ment, and inflation and unemployment.

The fundamental philosophy of system dynamics is based on the premise that
the behavior (or time history) of a system is caused principally by its underlying
structure [9]. The general idea of SD can be described as consisting of three major
steps: (1) eliciting important objects and variables, both tangible and intangible, that

are believed to be responsible for generating the observed behavior; (2) identifying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22
their cause-effect relationships; and (3) constructing a quantitative model that

encompasses and links all cause-effect feedback loops and analyzes the system as a
whole. SD takes advantage of the fact that a computer model can be of much greater
complexity and carry out more simultaneous calculations than can the mental model
of the human mind.

Recently, the System Dynamics modeling technique has been applied to the
software project management domain as well. The work of Abdel-Hamid and Mad-
nick ([2], [7]) represents one of the first applications of SD in this area. Other works
include Lin and Levary [48], Cooper [30-31], Madachy [52-53], Collofello and Tvedt
[79-80}, Rodrigues and Williams [68].

Cooper applied System Dynamics to software development projects with a
focus on assessing the impacts of “work quality” and “rework discovery time” based
on the generic concept of the rework cycle [30-31]. Their findings suggest that lower-
ing rework discovery time is most leveraged in improving project schedule perfor-
mance when quality is not at extremely low or extremely high levels [30]. Under
low-quality conditions, software project managers should work first on quality
improvement practices and systems such as early specification and design reviews,
then accelerate rework discovery.

Rodrigues and Williams [68] proposed to integrate System Dynamics with tra-

~ ditional project management techniques to support the management of on-going
projects. This is different from the conventional use of the system dynamics tech-
nique in which SD models are calibrated against completed projects and the diagno-
sis results from SD models are used to provide guidance for future project
developments. In their work, the SD model is employed to assess the current plan,

identify potential risks, diagnose segments of past behavior, and help identify causes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23
for deviations. The SD model is recalibrated to reproduce segments of past project

behavior and provide new estimates for future behavior.

In summary, the above works represent important contributions for the appli-
cation of SD to software project management. Whether it provides on-going
dynamic support for the current project or postmortem analysis to provide guidance
for future projects, SD has been found to offer important benefits to the analysis of
software development project management. We will review the other four SD mod-
els (Abdel-Hamid and Madnick, Lin and Levary, Collofello and Tvedt, and
Madachy) in more detail and compare them with the proposed CSE-SD model in

section 4.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3
CONCURRENT SOFTWARE ENGINEERING FRAMEWORK

3.1 Introduction

In this chapter we present a systematic classification of different types of CSE prac-
tices based on a conceptual Resource-Activity-Work product (RAW) model. The pro-
posed RAW model provides the basis for us to define “concurrency,” identify different
relationships that exist among resources, processes, and products, and, most impor-
tantly, to classify different types of CSE practices. In chapter 4, we will identify the bene-
fits and potential risks of each type of CSE practice, then construct a system dynamics
simulation model to quantitatively assess their impact.

The remainder of this chapter is organized as follows. Section 3.2 presents the pro-
posed RAW model based on three entities: human resource, development activity, and
work product. A classification of different types of CSE practices based on the RAW
model is presented in section 3.3. We review and present state-of-the-practice CSE prac-

tices using the RAW model in section 3.4.

3.2 ARAW Model

Three entities are of concern: process, product, and resource [26]. These entities
represent essential perspectives that most of the software process models need to cap-
ture. Processes are collections of all activities that are required to design and implement
the software product. Requirements analysis, high-level design, detailed design, coding,
test planning, and system integration and testing are common activities for any nontriv-

ial software development projects. Products are any artifacts that are produced by

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
processes. For example, the “requirements specification” document is the work product

produced by the “requirements analysis” activity. Resources are any items used by pro-
cesses, excluding products of other processes. Human resources, for example, are the
most important resource for any software development project.

We present a conceptual Resource-Activity-Work product (RAW) model to capture these
three essential perspectives. The model considers the three entities at the same time and

treats them as one integrated object.

Information flows RAW object
»| <R1, A1, WI> from upstream to downstream o
¥ Case 1.1 Information flow
Type 1 Case 1.3 Type 3
. Two-yvay R2 and R4 compete with each other
information flo
Case 3.1
Case 1.2 P Case 3.2
Information flows <R2, A2, WI> i R2 and R4 <R4, A2, Wi>
from downstream to upstream cooperate with each other
Type0 | wiand w2
may be dependent Case 2.2
on each other Case 2.1 Case 2.3
w1 Type 2
W1 and W2 depends on W1 and W2
are independent w2 are interdependent

<R3, A2, W2>

Figure 3.1. A conceptual resource-activity-work product model.

By treating human resources, development activities, and work products as one
integrated object, we identify four major types of relationship between any two RAW

objects, from Type 0 to Type 3, as illustrated in figure 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26
The “Type 0” relationship (e.g., between <R1, A1, W1> and <R3, A2, W2>) cap-

tures the situation in which different teams or individuals (R1 and R3) perform different

activities (Al and A2) on different work products (W1 and W2). However, W1 and W2

may depend on each other. Here, the “R” component of the RAW object is coded as 0

(because of different human resources R1 and R3), the “A” component is coded as 0

(because of different activities A1 and A2), and the “W” is coded as 0 (because of differ-

ent work products). Note that “0” means “different” while “1” represents “the same.”

The “Type 1” relationship (e.g., between <R1, A1, W1> and <R2, A2, W1>) cap-
tures the situation in which different teams or individuals (R1 and R2) perform different
activities (Al and A2) on the same work product (W1). The Type 1 relationship can be
further classified into three cases:

* Case 1.1: A2 depends on Al. An instance of this inter-RAW relationship is the tradi-
tional waterfall model, where information flows from the upstream phases to down-
stream phases. For example, design teams pass design specification to coding and
testing teams for implementation and testing.

* Case 1.2: Al depends on A2. Information flows from downstream phases toupstream
phases. An example of this situation is “design for testability,” where testing issues
are considered in the design phase.

* Case 1.3: Al and A2 are interdependent. Information flows are bidirectional.

The “Type 2" relationship (e.g., between <R2, A2, W1> and <R3, A2, W2>) captures
the situation in which different teams or individuals (R2 and R3) perform the same
activity (A2) on different work products (W1 and W2). Type 2 can be further classified
into three different cases:

» Case 2.1: W1 and W2 are independent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27
* Case 2.2: W1 depends on W2 (or W2 depends on W1). As an example, W2 is a pro-

gram module that calls another module W1 (i.e., W2 depends on W1). Any changes
to the interface of module W1 causes module W2 to be reworked, since it is affected.

* Case 2.3: W1 and W2 are interdependent.

The “Type 3” relationship (e.g., between <R2, A2, W1> and <R4, A2, W1>) cap-
tures the situation in which different teams or individuals (R2 and R4) perform the same
activity (A2) on the same work product (W1). The “Type 3” relationship can be divided
into two cases, depending on how the two human resources are related to each other.

* Case 3.1: R2 and R4 compete with each other. They usually have the same skills or
belong to the same functional groups. For example, two different programmers work
on a shared program module. Concurrent updates to a common module may violate
the integrity of that module.

* Case 3.2: R2 and R4 cooperate with each other. They usually have different skills or
are members of different function groups. An example of this case is when members
of a cross-functional team work on product design. For example, marketing special-

ists work with designers in drafting requirements specification for a new product.

3.3 A Classification of CSE Models
In this section, we classify CSE practices into different types based on the RAW

model. We review state-of-the-practice CSE practices and demonstrate how they can be
represented by the RAW model. To classify concurrent software development practices,
we extend the RAW model with another dimension-time.

Definition. Each RAW object has a start time T and a finish time Tr. A RAW object is

said to be active during the interval of [T, T¢].

Definition. Concurrency occurs when two RAW objects have overlapping active

intervals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
3.3.1 Type 1 Concurrency

Type 1 concurrency occurs when the two RAW objects with Type 1 relationship
overlap, as illustrated in figure 3.2. In Type 1 concurrency, different human resources
perform different activities on the same work product at the same time. Phase overlap-
ping (PO) is an example of Type 1 concurrency. PO overlaps consecutive development
phases such as requirements and design. The requirements analysis group performs
requirements analysis and passes a “partially complete” requirements specification to
the design group. The design group performs architectural design based on the specifi-
cation. Since the two groups perform different activities at the same time, it is an

instance of Type 1 (RAW = 001) concurrency.

information flow

<R1, A1, W1> l

TYYRY!

<R2, A2, W1> - l

information flow

» TIME
Figure 3.2. Type 1 concurrency.

3.3.2 Type 2 Concurrency
Type 2 concurrency occurs when the active intervals of two RAW objects with
Type 2 relationship overlap. As depicted in figure 3.3, in Type 2 concurrency, different

human resources groups (R1 and R2) perform the same activity (A2) on different work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29
products (W1 and W2) at the same time. In Type 2 concurrency, a system is partitioned

into subsystems and assigned to different developers or teams for concurrent develop-
ment. However, system decomposition can occur at different stages, such as the require-
ments analysis stage, the high-level design stage, and the detailed design stage. An
example of requirements-stage system decomposition is Fujitsu’s Concurrent Develop-
ment practice [12-19]. In the development of a large-scale telecommunication software
system, each release is decomposed into multiple subsystems (called enhancements) at
the early stage of the development life cycle and assigned to different teams for concur-
rent development. We present a more detailed review of the Concurrent Development
practice in section 3.4.1.

Another example of Type 2 concurrency is the traditional practice of activity con-
currency in the detailed design stage, where “modules” usually are implemented by dif-
ferent programmers. They perform the same activity (i.e., coding) on different modules
at the same time. Therefore, it is a Type 2 concurrency. However, the RAW object is
defined at a lower level in which the “R” component refers to individual programmers,
the “A” component refers to the coding activity, and the “W” component refers to indi-

vidual program modules.

<R1, A1, W1>
YYYRYNRNRYY

Communication because of
possible inter-dependency
between W1 and W2

<R2, A1, W2>

— TIME

Figure 3.3. Type 2 concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
3.3.3 Type 3 concurrency

Type 3 concurrency occurs when the active intervals of two RAW objects with
Type 3 relationship overlap. As depicted in figure 3.4, in Type 3 concurrency, different
human resources (R1 and R2) perform the same activity (Al) on the same work product
(W1) at the same time. An example of Type 3 concurrency is Joint Requirements Plan-
ning (JRP) [54]. JRP involves all interested stakeholders, such as business executives,
project managers, and key end-users, to define system requirements and perform high-
level design. In this case, different people (with different skills and interests) perform the
same activity (i.e., requirements planning and specification) on the same work product
(i.e., the entire system).

Another example of the Type 3 concurrency is when two different programmers (R
= 0) update (A = 1) the same program source file (W = 1) at the same time (i.e., RAW =
011). These two programmers are in a position of competing with each other. If their
work is not coordinated and synchronized. their efforts might conflict with each other.
other. This is different from the JRP where people are in a position of cooperating with

one another.

<R1, A1, W1>
YYRRYRNRYNYY

R1 and R2 could compete or
cooperate with each other

<R2, A1, W1>

- » TIME

Figure 3.4. Type 3 concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
3.3.4 Type 0 concurrency

Type 0 concurrency occurs when the active intervals of two RAW objects with
Type 0 relationship overlap. As depicted in figure 3.5, in Type 0 concurrency, different
human resources (R1 and R2) perform different activities (Al and A2) on different work
products (W1 and W2) at the same time. Type 0 (RAW = 000) concurrency is congruent
with Type 2 (RAW = 010) concurrency (i.e., Synchronous Concurrent Subsystems con-
currency). In the “Synchronous Concurrent Subsystems” (SCS) concurrency, different
individuals or teams perform the same activity on different work products (i.e., RAW =
010). The development process is “synchronized,” since they all perform the same activ-
ity (e.g., design) at the same time. However, when two individuals or teams progress at
a different pace, the SCS concurrency transforms into an Asynchronous Concurrent Sub-
systems (ACS) concurrency. While one team is working on high-level design, the other
team might progress to the detailed design or coding stage. Since they are performing
different activities at the same time, therefore, the “A” component of the RAW object is

changed to 0 (i.e., RAW = 000).

<R1, A1, W1>
YYYRINUNNRY!

Communication because of
possible inter-dependency
between W1 and W2

<R2, A2, W2>

.- p TIME

Figure 3.5. Type 0 concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32
We use RAW objects as a basis to classify concurrency into four types, namely,

Type 0 (RAW = 000), Type 1 (RAW =001), Type 2 (RAW = 010), and Type 3 (RAW = 011).
However, the other four RAW combinations with the “Resource” component equals to 1
(i.e., 100,101, 110, and 111) are not considered because of the following reason. The RAW
model is a general model that can depict any software process models, not just the con- -
current development model. When the Resource component equals to 1, it is indeed a
sequential model because truly concurrency is that one single resource can perform one

activity at a time.

3.4 State-of-the-Practice CSE Practices

Although concurrent engineering of software products is not a common practice in
the software industry, there are a few CSE-based practices that have been used and
proved effective. In this section we will review some of them and justify how the RAW

model can depict them effectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

Design Team A Test Team [_
designs/impl tests
Enhancement 1.1 Release 1 (Copy 1)
Type 2 Cave 2.1
ype
: System [aegration Test Team 2
Design Team B X | 2 -
desig r:li mplements - Team mxegr:ues‘all — tests
Enhancement 1.2 ‘“h;':::‘“s:“:‘ m Relcase | (Copy 2)
Type 2 Cuse 2.1
Design Team C Test Team 3
designs/implements tests
Enhancement 1.3 Release | (Copy 3)
Dipe
Design Team A

designs/implements
Enhancement 2.1

System Integration
e Tcam integrates all

cnhancements in
Release 2
Design Team C
designs/implements
Eshancement 2.2

Figure 3.6. The Fujitsu concurrent development model.

3.4.1 Concurrent Development Model

One of the first successful experiences of CSE-based practice is Fujitsu’'s Con-
current Development Model (CDM) [12-19]. The CDM has been used in the develop-
ment of a large-scale communication software system. It enables multiple small
teams to work concurrently on different enhancements in a release. Multiple
enhancements that are concurrently developed by different teams are incrementally
integrated, tested, and delivered to the customer as a release.

A RAW-based representation of the CDM is shown in figure 3.6. As the figure
shows, there are three concurrency situations in CDM, namely, Type 2, Case 2.1, and

Type 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
* Type 2 Concurrency. In Type 2 concurrency, different teams develop (i.e., design,

implement, and perform pre-integration tests on) different enhancements at the same
time. The enhancements developed by different teams usually are related to each
other in certain degrees.

e Case 2.1 Concurrency. When all the enhancements within a release are integrated,
they are distributed to different testing teams to conduct concurrent testing.
Although these testings are performed on the same release, they are not on the same
copy. Therefore they belong to Case 2.1.

e Type 0 Concurrency. When the development teams finish the development of their
responsible enhancements, they move on to work on one of the enhancements of the
next release. Therefore, the integration of Release 1 performed by the integration
team occurs at the same time as the development of Release 2 performed by the
development teams. Since they work on different work products (i.e., Release 1 and

2), their efforts belong to Type 0.

3.4.2 Concurrent Internationalization

Another CSE practice that has been used in the development of global software
products is Concurrent Internationalization (CI) [65]. Traditionally, the development of
global software products involves three major phases, namely, base-product engineer-
ing, internationalization, and localization. These three phases have been done sequen-
tially in the past. After the completion of the base-product version, it must be adapted to
local market conditions. Depending on the specific circumstances, this adaptation can
involve minor or major changes to the base product. For example, this adaptation may
require changes in user interfaces, messages, online help, language components, and

even software structure. Incorporating such changes sequentially after developing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
base product requires substantial rework and therefore extends the local version’s time-

to-market.

Due to the ever shrinking-windows of market opportunities, software product
vendors are seeking ways to reduce the time-to-market of local versions of global soft-
ware products. Concurrent internationalization has been proved to be effective in this -

regard.

pri Bave Praduct [cam

Base-praduct

base product local Case 1.2
Case 1.7 market conditions

Herie Product Team

| internationalization

adapted local
base product market conditions
} [acal Produc.

Localization

Figure 3.7. Concurrent internationalization of global
software products.

Figure 3.7 shows a RAW representation of the CI practice. As illustrated in the fig-

ure, there are two concurrency situations in CI, namely, Case 1.1 and Case 1.2.

* Case 1.1 Concurrency. In this situation, two RAW objects overlap, and the informa-
tion flows from upstream activities (i.e., base-product engineering) to downstream
activities (i.e., local-product engineering). This is an example of phase-overlapping
concurrency.

* Case 1.2 Concurrency. In this situation, two RAW objects overlap, and the informa-

tion flows from downstream activities (i.e., local-product engineering) to upstream

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36
activities (i.e., base-product engineering). By considering local market conditions and

circumstances, the base-product development team is able to design a flexible soft-

ware architecture that can be adapted to any local languages and market conditions.

3.4.3 Platform Development Model

The Platform Development Model (PDM) is a matrix of conceptual models for
supporting platform development [44]. The objectives of the PDM are (1) to structure the
development process of a family of similar products in such a way that the time-to-mar-
ket of each product and the time-between-successive-products are minimized, and (2) to
achieve an appropriate level of consistency across these products.

Instead of developing multiple, closely related products independently, the PDM
seeks to identify and separate out common elements contained within a software prod-
uct family and put them into the platform. The platform, once developed, provides a
basis for value-added, differentiating features for different products within a product
family.

An essential element of the PDM is the “platform and product life cycles,” as
shown in figure 3.8. The major phases of the “platform life cycle” include platform
requirements definition, feasibility validation, architecture definition, platform develop-
ment plan, infrastructure development, code construction, and platform integration test.
The “product life cycle,” which relies on the platform life cycle, has a similar underlying

structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition

Plan

lafrastructure

Investigation Imy
Platform life cycle I
TTatgurm Jeam Flailnem Teum Tlatiarm Teom o tjrm Teum Tatjarme Team Flaitora Team Flatfurm Team
PMaiform s I Platfarm . Platform
P Requiremcats H Archs Develop ‘[‘;r"'l‘"'""" Cuu:l:::uuu Integration
Definstion Validauon Defimtioa Plan evelopment Test
Feedback Cuse 2.2
Type @ Platform Case 2.3
urchitecinre Code
Delivetables
Product 1 life cycle Case 2.1 \
LTroduci Tenm 1 7Y Frndact Yeam 1 70 Trndeci Yenm 1 7 Frudact Yeam 1 /M raduct Temm T froduce Yo T roduce Team 1
Product Platform Platform-hased Adupt . Svatem
input and Requitements || Eambu Archi Uevetor Plaform Conctraction Text
Feedback Definstion lastantiation Maa Infsastracture
Type 2
Product 2 life cycle
Tondecs Team S 7Y Trudect Team Y 7Y Trwduci Teum T 7Y Traduct Team Y Tudect Team Frodeet Yeam T JY redeci Team S
« Product Feaxsbilsty A'!'-llllfmm l"tl;‘lrnfm-h;ud FIIN“N Cade Sy stem
Input and ciurements Validation v fatform Cunstruction Teat
Instantiation

Feedback

Figure 3.8. The platform development model.

37

There are essentially three concurrency situations in the platform development

model:

* Type 0: The platform team and the product team perform different activities on differ-

ent work products. For example, the platform team performs the “feasibility valida-

Hon” activity on platform at the same time that the product team conducts the

“product requirements definition” activity on product-unique features.

* Cases 2.2 and 2.3: The situation where the implementation phase of the platform life

cycle overlaps the product implementation work is an instance either of Case 2.2 or

Case 2.3 concurrency, depending on how the modules and code

components in

the platform and the product are related. Although Case 2.1 inter-RAW relationship

exists between the platform and product teams, it is a sequential relationship. For

example, the platform architecture and code components flow from the platform

team to the product team after they are completed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

* Type 2: The Type 2 concurrency occurs between, for example, product team 1 and
product team 2 because they perform the same activity (e.g., platform architecture
instantiation) on different work products (i.e., products 1 and 2). Since the work prod-
ucts performed by two product teams usually do not depend on each other, Case 2.1

concurrency therefore dominates.

3.4.4 Parallel Timebox Development
Another CSE practice being used in the development of data management applica-
tions is the Parallel Timebox Development (PTD) practice [54]. As illustrated in figure

3.9, the PTD practice consists of four major phases, namely, requirements planning, user

design, construction, and cutover. There are two concurrency situations in the PTD prac-

tice:

* Type 3: The first two phases (i.e., requirements planning and user design) of a PTD
process involve all interested stakeholders, such as business executives, project man-
agers, and key end-users, to define system requirements and perform high-level
design. This is an example of Type 3 concurrency, that is, different function groups
work on the same activity (either requirements planning and specification or high-
level design) on the same work product (i.e., the entire system). After the joint
requirements planning session, a central “coordinating model” is built, from which a
project is partitioned. The coordination model consists of a normalized data model, a
tree-structured process decomposition diagram, a process dependency diagram, data
flow diagrams, and a process/data matrix.

* Type 2: In PTD, a project is decomposed into subprojects and assigned to different
small SWAT (Skilled With Advanced Tools) teams for concurrent development. To
manage concurrent development and make sure each SWAT team completes its share

of work at approximately the same time, a rigid development time (i.e,, timebox)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39
framework is set for all the SWAT teams. Since different teams perform the same

activity (i.e., design, implementation, and unit test) on different subprojects at the
same time, it is a Type 2 concurrency. The interfaces among the subsystems are

defined by the coordinating model.

Joint Requirements Planning
P End Users

Type 3 Executives

identify H

requirements

IZ Developers

Executives

design the system i
pd
Joint Application Design SWAT Team A
construct
Subsystem 1
P

SWAT Team B
Tvpe 2 construct # Cutover Team test the

Type 3

Subsystem 2 systemv/train users

e
SWAT Team C
construct H
Subsystem 3

Figure 3.9. The parallel timebox development practice.

3.4.5 Hardware-Software Codesign

Another CSE approach to the development of embedded software systems (i.e.,
firmware) is hardware-software codesign practice. As opposed to the traditional firm-
ware development process, in which hardware and software engineers work separately,
codesign involves both communities and integrates their work. A typical design process

begins with functional exploration, in which designers define a desired product’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40
requirements and produce a specification of the system’s behavior. Hardware and soft-

ware designers map this specification onto various hardware and software architectures.

They then partition the functions between silicon and code and map them directly to

hardware and software components. During implementation, designers either reuse or

design hardware and software components. Finally, they integrate the system for proto-

type testing [37].

The hardware-software codesign practice is a combination of Type 3 and Case 2.3
concurrency, as illustrated in figure 3.10, depending on how hardware and software
engineers work together.

e Type 3: In codesign, functional exploration, architectural mapping, and hardware-
software partitioning involve both functional communities at the same time. This is
an example of Type 3 concurrency in that different functional groups perform the
same activity (e.g., function exploration) on the same work product (i.e., the entire
system).

* Case 2.3: In the implementation stage, hardware and software engineers work on
hardware and software components, respectively. This is an example of Type 2 con-
currency. Specifically, since the work product performed by both communities has

strong relationships, Case 2.3 applies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

AW Frreinccrs
Functional /
Exploration

7~ MW Enghreers
Type 3 HW Envincers
Architectural
Mapping

Type 3,

pe 3,

SW Engineers

Software
Implementation | =

Case 2.3 System
/AW Engincers 7| Integration

Hardware -
Implementation

HW/SW
Partitioning

Figure 3.10. Hardware-software codesign.

3.4.6 The IPTES Approach

Incremental Prototyping Technology for Embedded real-time Systems (IPTES) is a
CE approach to the development of embedded software systems [62-63]. Central to the
IPTES approach is the concept of heterogeneous prototypes. A “heterogeneous proto-
type” is an executable system model whose different parts may be specified at different
abstraction {modeling) levels, and yet they can be executed together as a total system.
Models communicate through shared elements, such as data-flows, data-stores, operat-
ing system communication primitives, and procedure calls [62].

With IPTES, there could be several teams working simultaneously with different
heterogeneous prototypes. A development team can use intermediate results from other
teams for testing and validating their own work. Each of the development teams may
use relatively abstract models of the other parts of the system as a testbed (either stubs
or drivers) for their own part, yet they can proceed with developing their part at full

speed by means of advancing the maturity of their part to the next abstraction level(s).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42
As shown in figure 3.11, the concurrent threads of development activities are orga-

nized around levels of risk. The development process includes multiple concurrent
traces, where each trace corresponds to a thread of engineering activities. High-risk ele-
ments are prototyped and specified. Concurrent with the design and implementation of
high-risk threads, the medium-risk elements are being specified. Later in the process,
the development of activities of different risk-level proceeds concurrently. They are
incrementally integrated, installed, and put into use.

Concurrent engineering can take place at the level of concurrent threads, or it may
take place at a subsystem level (i.e., work for each subsystem may contain concurrent
threads) [62]. IPTES is an example of Type 0 concurrency, since different teams perform

different activities (i.e., heterogeneous prototyping) on elements of different risk-level.

Team |

Team 1

leam {

Team |

Concept development, Architecture, Code. Unit test Integration, High-risk elemeflts
Requirements of Design of of Sui>sys cem | Acceptance of development spiral
Subsystem | Subsystem [Subsystem |
Type 0 Type 0
Team 2 Team 2 Team 2 Team 2
Medium-risk clements| Concept development, Architecture, : Integration,
' : R P p Design of Code, Unit test Acceptance of
development spiral equirements B of Subsystem 2
ofbsystem 2 Subsystem 2 Subsystem 2
Type 0
Team 3 Team 3 Team 3 Team 3
. Concept development Architecture, . . Integration,
- g . Unit test
Low-risk elements Requirements of Design of S;"S’;bg"s‘t e Acceptance of
development spiral Subsystem 3 Subsystem 3 Subsystem 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.11. The IPTES approach.

43
3.4.7 Microsoft Daily Build Process

Another CSE approach to the development of commercial software products is
Microsoft’s Daily Build (DB) process. The DB process begins with a “vision statement”
outlining the goals of a new product. An initial set of product features is identified and
priority-ordered based on their importance in supporting end-users” activities. The list
of prioritized features is then partitioned into three to five feature sets that small teams
can develop in a few months.

The DB process enables multiple feature teams to work in parallel. Each feature
team is responsible for a specific set of product features end-to-end from feature specifi-
cation, design and coding, to feature integration and testing. With the DB process, speci-
fications, development, and testing are carried out in parallel. However, the teams
synchronize their work by building the product and finding and fixing errors on a daily
and weekly basis. This is achieved by maintaining a shared master version of the imple-
mented product. Developers have the freedom to evolve design and implementation of
their responsible features; however, they must check in their work at least twice a week.
As illustrated in figure 3.12, there are essentially two concurrency situations in the DB
practice, namely Type 1 and Type 2.

* Type 1: Each feature team usually consists of similar number of developers and
testers. The development and testing are done in parallel. Here, developers and
testers perform different activities on the same feature. Developers are responsible for
feature specification, design, and implementation. The testers prepare test plans and
design test cases based on the preliminary information about the specification and
design provided by the developers. The detected defects are fed back to the develop-
ers for revision and improvement. The ongoing concurrent activities between devel-
opers and testers is an example of Type 1 concurrency (different people working on

different activities on the same work product).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
* Type 2: This inter-RAW relationship occurs between developers of a feature team,

developers of different teams, and different feature teams. For example, the situation
where Developers 1 and 2 perform the same activity (i.e., design/implement) on dif-
ferent work products (Features 1 and 2) at the same time is an instance of Type 2 con-
currency. All three cases are possible, depending on how Features 1 and 2 are related

to each other.

Leature feam J

| Design/Implement/Test
Type 2 Feature (Set) 3
Developer)

Design/implement
Feature 2

Specification & | Source
Destgn | Code Detected
Bugs

Jexter J

Developer 1

Design/Implement Test
Feature 1 Feature 2

Specification & | Source
Design | Code Detected
Type ! Bugs

Tevier |

L —— e Test
Feature 1

Figure 3.12. The Microsoft daily build process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4
A SYSTEM DYNAMICS MODEL

4.1 Introduction

This chapter presents the proposed concurrent software engineering system
dynamics simulation model CSE-SD. Our purpose is to gain insight and understand-
ing about the impact of CSE on software project development with a focus on project
cost and development cycle time. CSE-SD is drawn from extensive literature review
and interviews with software project managers.

We will then use the simulation model as a research vehicle to investigate a set
of preliminary questions. CSE-SD can answer numerous software project manage-
ment questions, such as “Will an increased degree of concurrency shorten project
development cycle time?” The results of other important questions are presented in
chapters 6 and 7.

In the next section we will examine the benefits and problems of each type of
concurrent software engineering and their dynamic implications. They are repre-
sented as a set of cause-effect feedback relationships. These feedback relationships
serve as the foundation of CSE-SD. In section 4.3, we present an overview of the
overall model structure and explain the main functions of each model component. A
detailed specification of the model, including formal model equations, is included in

appendices A and B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46
4.2 Dynamics of Concurrent Software Engineering

In this section we describe the underlying cause-effect feedback structures of
the CSE-SD model. The feedback structures aim to address the issues of the four

types of concurrency discussed in section 3.3.

4.2.1 Phase Overlapping

Phase overlapping in hardware manufacturing industry has shown a strong
correlation between the degree of phase overlapping and shorter development life
cycle. This approach, however, is not well adopted in the software industry, since
software development has a “soft” front end. Requirements changes of 25% or more
are not unusual [22]. Beginning the high-level design activities before the require-
ments definition has stabilized increases the risk that changing specifications will

require redesign, and the cost of reworking a stage can be exorbitant [21].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Degree of phase +
overlapping
Stability of
upstream tasks
Manpower /_\': + Downstream phase
= o available for completion time

development Average
work rate

QA effort
v /+
Do Project
m + completion time -—
Potential
- Downstreant tasks downstream
to be reworked task change

Figure 4.1. Dynamics of phase overlapping.

Figure 4.1 shows the cause-effect dynamics of attempting the phase overlapping
software development approach. Phase overlapping happens when project develop-
ment starts a downstream phase before the upstream phase is completed. A positive
effect is that, by starting earlier, the downstream phase can complete earlier. There-
fore, the project can be completed earlier. Another positive effect is that more work
can be done at the same time, therefore, the overall average work rate is increased.
As a result, the project can be completed earlier. The two positive effects of starting

downstream phase early are depicted in the following two causal links (CLs):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48
Downstream phase start time +> Downstream phase completion time +>

Project completion time (CL 6)

Downstream phase start time -> Degree of phase overlapping +> Average

work rate -> Project completion time (CL7)
Note that A +> B (A -> B) represents A and B change in the same (opposite) direc-
tion. For example, increasing A will incur an increase of B.

Instead of waiting for the completion of the upstream phase, downstream engi-
neers need to use preliminary information from the upstream phase. This has a neg-
ative effect on project completion time, as shown in CL 8. Since the exchanged
information is not yet stable, any changes to the exchanged information must be
incorporated in the downstream phase. The more unstable the information being
used by downstream engineers, the more potential changes to downstream tasks can
be expected. The unexpected increase of the downstream rework tasks will consume
part of the person-day resource originally allocated to planned development tasks,
which leads to the decrease in the overall average work rate. As a result, the project
completion time is prolonged.

Downstream phase start time +> Stability of upstream tasks -> Potential

downstream task change +> Downstream tasks to be reworked +>

Downstream rework effort -> Manpower available for development +>

Average work rate -> Project completion time (CL8)

The negative effect of using unstable information is exacerbated when down-
stream tasks are performed at a faster pace (i.e., higher average work rate). This
leads to more downstream rework tasks to be generated. More rework tasks requires
more rework effort. Therefore, the manpower resource originally allocated to

planned development tasks is reduced. The end result is that project completion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
time being delayed even further. The negative effect of starting downstream phase

early is depicted in the following causal link:
Downstream phase start time -> Degree of phase overlapping+> Average work
rate +> Downstream tasks to be reworked +> Downstream rework effort ->
Manpower available for development +> Average work rate -> Project
completion time (CL9)
Phase overlapping increases the need for engineers in different phases to com-
municate with each other. Two-way, high band-width information flows are needed
to keep the process from getting “out-of-sync” and to compress the time between
occurrence and detection of problems [21]. The negative effect of starting the down-
stream phase early is depicted in the following causal link:
Downstream phase start time -> Degree of phase overlapping+> Across-phase
communication overhead -> Average productive time +> Manpower available
for development +> Average work rate -> Project completion time (CL 10)
Using defective information from the upstream phase regenerates more down-
stream defects. The longer the defective information remains undetected, the more
the downstream defects will be amplified. Therefore, the time between occurrence
and detection of the defects in the exchanged information (Upstream Defect Age)
has an impact on the amount of downstream tasks that need to be reworked. Com-
munication across two phases, although helpful to detect problems early, takes away
from the staff’s productive time (Average Productive Time). A decreased average
productive time means that decreased manpower will be available for planned
development tasks. As a result, the average work rate is decreased, which leads to
the project completion time being extended. QA activities have similar effects. They

help to detect defects early, before they are regenerated and amplified. The effects of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
effective across-phase communication and QA on project completion time are

depicted in the following three causal links:
Downstream phase start time -> Degree of phase overlapping+> Across-phase
communication overhead -> Upstream defect age +> Downstream tasks to be
reworked +> Downstream rework effort -> Manpower available for
development +> Average work rate -> Project completion time (CL11)
QA effort -> Upstream defect age +> Downstream tasks to be reworked +>
Downstream rework effort -> Manpower available for development +>
Average work rate -> Project completion time (CL12)
QA effort -> Manpower available for development +> Average work rate ->

Project completion time (CL13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Synchronous Concurrent Subsystems

Average
productive
time

+
/\i
Inteam Manpower
QA effort available for
development
—-—
—_—
-—
Interface
problems
age Interface
problem
resolution
+ effort

Integration
effort

+

Integration
tasks

Degree of ‘._/
concurrency

o~

problems
+

Interteam
communrication

+
overhead
-
Number of

teams

+

i +
Average

work rate
-—

Project
completion time

+

Number of
interface +

Interface
complexity

/+

Number of

‘_—/ components

Figure 4.2. Dynamics of synchronous concurrent subsystems.

51

Synchronous concurrent subsystems (SCS) is a common practice in the soft-

ware development industry. However, it normally is practiced in the detailed design

stage, where modules with well-defined interfaces (ideal situation) are assigned to

different programmers for concurrent implementation. Recently, software develop-

ment companies have been seeking ways to practice concurrent subsystems devel-

opment in the early stages of the development life cycle, such as requirements

analysis and high-level design ([14], [34], [44]). The benefits and potential risks of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
synchronous concurrent subsystems development approach are examined in this

section.

Figure 4.2 shows the dynamics of the synchronous concurrent subsystems
development approach. Two key milestones in a SCS-based project are problem
decomposition and synchronization/ integration.

Large-scale software systems must be decomposed into components, so they
can be assigned to multiple teams and/or individuals for concurrent development.
The total number of components, their contents, and sizes are important issues. If a
system is decomposed into more components, they then can be assigned to more
development teams. More concurrent development teams means more tasks are
being done at the same time (increased degree of concurrency). The overall average
work rate is increased, and as a result, the project completion time is reduced. The
effects of increasing the number of concurrent teams are depicted as the following
causal link:

Number of teams +> Degree of concurrency +> Average work rate -> Project

completion time (CL14)

There is, however, a negative effect, as well, when the number of concurrent
teams is increased, as depicted in CL 15. As the number of teams increases, more
inter-tearn communication traffic is expected, especially when the system is not well
partitioned (i.e., high-interface complexity). Therefore, staff members’ average pro-
ductive time is decreased, which leads to the decrease of available manpower
resource for planned development tasks. The end result is that project completion
time is delayed even further.

Number of teams +> Interteam communication overhead -> Average
productive time +> Manpower available for development +> Average work

rate -> Project completion time (CL15)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
As the number of components increases, the interfaces among components

become more complicated. Higher interface complexity has two negative effects on
project schedule, as depicted in CL 16. First, a complex interface incurs more com-
munication overhead among development teams. As project staff members spend
more time communicating with other teams, the time they can spend on develop-
ment work is decreased. Decreased productive time means decreased manpower is
available for planned development tasks. As a result, the overall average work rate
is decreased, and the project completion time is extended.
Interface complexity +> Interteam communication overhead -> Average
productive time +> Manpower available for development +> Average work
rate -> Project completion time (CL 16)
The second effect of a complex interface is that interface problems are more
likely to happen, and as the number of components increases, the effect becomes
more serious. Interface problems have to be resolved sooner or later. More interface
problems mean more interface problem resolution effort is needed. As manpower is
allocated to resolve interface problems, the available manpower available for
planned development tasks is decreased. The overall average work rate also
decreases. As a result, the time to project completion is extended. The effects of a
complex interface are depicted in the following two causal links:
Number of components +> Interface complexity +> Number of interface
problems +> Interface problem resolution effort -> Manpower available for
development +> Average work rate -> Project completion time (CL17)
Number of components +> Number of interface problems +> Interface
problem resolution effort -> Manpower available for development +> Average
work rate -> Project completion time (CL18)

Another negative effect of increasing the number of components is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54
increased number of integration tasks. More components mean more tasks have to

be integrated. System integration takes away part of the manpower allocated to
planned development tasks. As a result, the overall average work rate is decreased,
and the project completion time is extended, as illustrated in CL 19.

Number of components +> Integration tasks +> Integration effort ->

Manpower available for development +> Average work rate -> Project

completion time (CL19)

Concurrent development without synchronization and coordination among
concurrent development teams throughout the project life cycle can result in inter-
face problems that surface at the end, when the components are integrated. For
example, in firmware development, delaying the integration of hardware and soft-
ware until the first testable hardware prototype is troublesome for several reasons.
Engineers have little time to correct design problems, and fixes are more costly than
they are earlier in the design process. Options for revisions are much more limited;
because of the rigidity of the hardware, design changes usually are made in the soft-
ware, at the expense of system performance [21].

Effective communication between engineers of two different teams and the
quality of the exchanged information both help to shorten the time between the
introduction and the detection of an interface problem (i.e, interface problem age). If
an interface problem is not detected close to the time it is introduced, then more
interface problems will be regenerated as it flows into downstream phases. The later
an interface problem is detected, the more interface problems will be amplified,
which, in turn demands more interface problem-resolution effort. As a result, the
planned development tasks are delayed, and the overall average work rate is

reduced, which leads to an extended project completion time, as depicted in CL 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55
Interteam communication -> Interface problem age +> Number of interface

problems +> Interface problem resolution effort -> Manpower available for
development +> Average work rate -> Project completion time (CL 20)
Besides frequent communication among concurrent teams, periodic interteam
QA activities (e.g., specification and design reviews) help to locate interface prob-
lems early, before they are amplified when they flow into subsequent phases. Inter-
team QA, although helpful to reducing the interface problem age, nonetheless takes
away staff members” productive time. The reduced average productive time means
less manpower will be available for planned development tasks. Therefore, the over-
all average work rate is reduced. As a result, the project completion time is extended.
Interteam communication -> Interface problem age +> Number of interface
problems +> Interface problem resolution effort -> Manpower available for

development +> Average work rate -> Project completion time (CL21)

4.2.3 Asynchronous Concurrent Subsystems

The Asynchronous Concurrent Subsystems (ACS) concurrency is congruent
with the Synchronous Concurrent Subsystems (SCS) concurrency. In SCS, different
teams perform the same activity on different work products. The development pro-
cess is “synchronized,” since different subteams perform the same activity (e.g.,
design) at the same time. However, when two subteams progress at a different pace,
the SCS concurrency transforms into the ACS concurrency. ACS is an example of
“Type 0 (000)” concurrency because different teams (R = 0) perform “different” activ-
ities (A = 0) on different work products (W = 0) at the same time.

Although the development is not synchronous (i.e., each subteam evolves its

design at different speed), the subteams” work must be integrated at the end of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
project. Therefore, it is important to know how to control the development progress

of each team, to be sure they will complete their share of work on time.

Interteam +
/ communication \
A Number of
verage teams
productive \
time
Degree of ‘__/ \+
concurrency ~ Work rate
+ difference
- t /—\.+\ +
Inteam Manpower
QA effort available for Average
development work rate Integration
\ delay
o Project ‘/
Interface completion time <=
problems Interface
age problem N_u:nbfer of +
resolution interzace
ffort problems
+ € .~ —
+
, +
Integration
effort Interface
complexity
+
+
Integration
tasks Number of
_// components
+

Figure 4.3. Dynamics of asynchronous concurrent subsystems.
Increasing the number of development teams will increase the degree of con-

currency, but it also increases the probability that the work rate of each team will be

deviated from each other. Faster teams have to wait for slower teams to complete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57
before their work can be integrated. The delay of integration prolongs the project

completion time, as the following causal link shows:
Number of teams +> Work rate difference +> Integration delay +> Project

completion time CL 22
p ()

4.2.4 Cross Function Integration

Concurrent engineering (CE), as practiced in the hardware manufacturing
industry, is an instance of Cross Function Integration (CFI) concurrency. CE inte-
grates expertise in multiple functions by forming a cross-functional team that
involve engineers from different functional areas: hardware and software engineer-
ing, marketing, process engineering, business development, customer engineering,
and manufacturing. Each member is involved in every stage of the product cycle
[67]. In a cross-functional team, engineers from different functional disciplines per-
form the same activity on the same work product at the same time. Therefore, CFI is
an example of “Type 3 (011)” concurrency. The cause-effect relationships of the Cross

Function Integration (CFI) are shown in figure 4.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Team size
+

_ \
. +
Defects age ‘\ Intrateam

communication
Team overhead
cross-functionality
~)
/ /

- AN ~

Interteam Average
Decision-making communication productive time
delay overhead —_— = \

L}
1+
//-\t Manpower available

Co-location . for development
Communication

Team delay
empowerment
\ ’

== " Average
<4 work rate

Average
4 staff productivity

Motivation /f’
+ 4— \

Schedule Time as a goal

pressure V

Figure 4.4. Dynamics of cross function integration.

In CE, the key ingredient is teamwork [67]. Product development time is
reduced through many teamwork-related mechanisms, including (1) cross-func-
tional teaming; (2) empowerment of decision-making authority; (3) co-location of
core team members; and (4) setting time as a goal [85].

Cross-functional development teams, formed at the start of a project, facilitate
the communication of product requirements and constraints among the functional

groups. This enables early problem identification, better cross-functional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
coordination and faster decision-making [85]. Teams composed of members from

different technical areas have been shown to be better at exploring design decisions
in breadth by posing alternatives and constraints and by challenging assumptions
[33]. Being able to quickly make high-quality decisions is a critical factor in fast
product development. Decision-making is made easier with a cross-functional team,
because the primary information providers and decision-makers are part of the team
[85]. The effects of forming multi-disciplinary teams are depicted in the following
four causal links:
Team cross-functionality -> Interteam communication overhead +> Average
productive time +> Manpower available for development +> Average work
rate -> Project completion time (CL 23)
Team cross-functionality -> Decision-making delay -> Average work rate ->
Project completion time (CL 24)
Team cross-functionality -> Defect age +> Number of tasks to be reworked +>
Rework effort -> Manpower available for development +> Average work rate -
> Project completion time (CL 25)
Team cross-functionality +> Team size +> Intrateam communication overhead
-> Average productive time +> Manpower available for development +>
Average work rate -> Project completion time (CL 26)
Personnel factors have the greatest potential to shorten software project sched-
ule across a variety of projects [57]. Motivation is undoubtedly the single greatest
influence on how well people perform. Most productivity studies have found that
motivation has a stronger influence on productivity than any other contributing fac-
tor [22]. The sense of empowerment has a motivating effect on staff members.
Empowerment, or downward delegation of decision-making power, has moti-

vational impacts. Instead of waiting for senior management’s approval, project team

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60
members are empowered to make and implement their own decisions. Empower-

ment results in an increased motivation to do things better and faster. The more
autonomy people have, the greater the sense of personal responsibility they tend to
feel for the outcome of their work [57]. They own the schedule, but they feel the pres-
sure of the market. This pressure causes them to reach for tools on their own [24].
Empowerment motivates engineers to work harder, especially under schedule pres-
sure. The effects of empowerment are depicted as the following three causal links:
Team empowerment -> Decision-making delay -> Average work rate -> Project
completion time (CL 27)
Team empowerment +> Motivation +> Average staff productivity +> Average
work rate -> Project completion time (CL 28)
Team empowerment +> Schedule pressure +> Average work rate -> Project
completion time (CL29)
Locating project team members close together can speed up development by
facilitating communication and decision-making [85]. It is costly to collect and dis-
seminate information among distributed development teams. Dividing the process
into multiple teams may block the smooth flow of information and development
knowledge [19]. The effects of co-location are depicted as the following three causal
links:
Co-location -> Communication delay -> Average work rate -> Project
completion time (CL 30)
Co-location -> Decision-making delay -> Average work rate -> Project
completion time (CL 31)
Goal setting is another key to achievement motivation. Setting time as a goal

speeds up the development process [85]. The experience of consumer products

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
illustrates that competitive benchmarking and focusing on reducing the time needed

to realize new products can drive significant process improvement.

Setting too aggressive a goal, however, has negative effects on project perfor-
mance. As schedule pressures increase, commitment will increase to some point, and
then decline as motivation declines due to overwork or disillusionment with the
project or the organization [59]. You should keep commitment up by maintaining a
slight-to-modest schedule pressure using deadlines and setting goals that challenge
work groups without exhausting them.

Time as a goal +> Schedule pressure +> (or ->) Motivation +> Average staff

productivity +> Average work rate -> Project completion time (CL32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
4.3 Model Structure

As shown in table 4.1, the proposed concurrent software engineering system
dynamics (CSE-SD) model consists of five subsystems, namely, Work Flow, Defects
and Rework, Human Resource, Manpower Allocation, and Manpower Needed, and four
other independent sectors, Planning, Project Control, Interteam Interactions, and Project
Scope Change. CSE-SD is implemented in ithink analyst [43] software package. An
overview of the model is shown in figure 4.5. The main functions of each model

component and their relationships are described below.

Table 4.1. Major components of the CSE-SD model

SUBSYSTEM SECTOR
Work Force
HUMAN RESOURCE Staff Productive Time
Staff Productivity
Requirements Work Flow
WORK FLOW Development Work Flow

System Integration and Test (SIT)
Requirements Defects and Rework
Development Defects and Rework
Requirements Manpower Allocation
MANPOWER ALLOCATION Development Manpower Allocation
SIT Manpower Allocation
Requirements Manpower Needed
MANPOWER NEEDED Development Manpower Needed
SIT Manpower Needed

Planning

INDEPENDENT SECTORS Project Control

Interteam Interactions

Project Scope Change

DEFECTS AND REWORK

The Human Resource subsystem consists of three sectors: Work Force, Staff Pro-
ductive Time, and Staff Productivity. The Work Force sector keeps track of the number

of software engineers currently working on the project. We divide work force into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63
two categories, namely, new staff and experienced staff, for three reasons. First, new

staff members usually are less productive due to their lack of project experience and
knowledge. Second, new staff members usually spend most of their time in training
and orientation right after they are brought into the project. Training also consumes
part of the experienced staff members’ productive time. The third reason is that new
staff members usually are prone to cornmit more errors than experienced staff mem-
bers.

The Staff Productive Time sector monitors the staff time resource. It breaks down
the project staff’s daily time into two main categories: project time and slack time.
Project time is the time that staff members spend on project-related activities, includ-
ing development, training, and project-related communication. It is further divided
into three different categories: productive time, training time, and communication
time. Productive time includes the time that staff members spend directly on devel-
opment activities, such as requirements specification, design, coding, testing, QA,
and rework. Training time keeps track of the time that project staff spends in training
per day, including the time spent both by experienced staff members and new staff
members in training-related activities.

Communication time captures the amount of time that project staff spends in
communicating with other members within a team and across teams. A well-parti-
tioned project usually has higher communication traffic within a team than across
teams. Slack time captures the time that project staff spends in non-project-related
events, such as coffee breaks, sickness, and so forth. Project staff overtime also is
monitored.

The Staff Productivity sector determines the average production rate of project
staff members (i.e., number of tasks performed per staff per unit time). Although

numerous factors could affect staff members’ production rate, we focus on four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
factors that have dynamic implications, namely, work force mix, learning effect,

schedule pressure, and staff exhaustion level. The average staff production rate at
any point in time is determined by multiplying the “nominal staff production rate”
(defined as the production rate of the experienced staff working under normal con-
dition, that is, there is no schedule pressure and they are not exhausted) by the four
factors. Schedule pressure, learning effect, and work force mix (more experienced
staff members equate to a larger production rate) have a positive impact on staff pro-
duction rate, while staff exhaustion level has negative effects.

The Work Flow subsystem models the software production activities, ranging
from requirements specification, software design, coding, to system integration and
test. It consists of three sectors, and each sector models the software production pro-
cess of the three phases modeled in CSE-SD, namely, requirements, development
(including design and coding), and system integration and test.

The Defects and Rework subsystem models the generation, detection, and
rework of detected defects. Three categories of defects are of concern: requirements
specification defects, development defects, and bad fixes. One important reason to
classify defects into these three categories is that different types of defects require
different costs to fix. Defects originated in upstream phases, such as requirements,
will flow into downstream phases if not detected. For example, a design based on
inconsistent requirements specification is defective, no matter how perfect the
design is.

The Manpower Allocation subsystem allocates the planned project effort to dif-
ferent software engineering activities, including requirements specification, devel-
opment, QA, defect correction, and system integration and test.

The Manpower Needed subsystem determines, at any stage of the development

life cycle, the effort perceived still needed to complete the project, including effort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65
needed for requirements specification, specification QA, specification defect

correction (determined in the Requirements Manpower Needed sector), development,
development QA, development defect correction (determined in the Development
Manpower Needed sector), system integration, system test, and defects found in the
system test phase (determined in the SIT Manpower Needed sector).

The amount of effort perceived still needed to complete the project is deter-
mined based on how well project staff performed in the past. In the early stage of the
development life cycle, project staff members usually do not know exactly how pro-
ductive they are. The perception of their productivity simply is their planned pro-
ductivity. However, when the project progresses to the end, they begin to realize
how productive they are. Therefore, their perception of their productivity
approaches their actual productivity. The total effort perceived still needed to com-
plete the project is fed into the Project Control sector to decide whether or not to
adjust project effort, schedule, work force, or all three, if needed.

The Planning sector is the entry point to the CSE-SD model. Its main functions
are to compute and distribute the estimated project effort to different phases of the
software development life cycle. Prior to initiating a software development project,
managers must estimate three things before the project begins: how long it will take,
how much effort will be required, and how many people will be involved [61]. Accu-
rate estimation of the project effort, schedule, and required work force, however,
relies on an accurate estimate of the product size. To run the model, the simulator
must provide a value for the initial estimate of the project size. CSE-SD calculates
project effort, schedule, and expected work force based on the COCOMO cost esti-
mation model [22-23].

The Project Scope Change sector models the change in the scope of a software

project. Reasons that cause the project scope to change include incomplete and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66
conflicting requirements specifications, requirements uncovered due to project

underestimation, and new requirements. Unplanned requirements, when discov-
ered and incorporated into the project plan, will cause part of the existing develop-
ment tasks to be deleted or modified, and new tasks will be added.

The Interteam Interactions sector deals with the interteam issues that result from
multiple concurrent activities. It models the generation, detection, and resolution of
problems and issues caused by multiple concurrent teams that could be avoided if
done by a single team. For example, multiple teams working on related subsystems
may disrupt the system integrity. In requirements specifications, for example, this
can cause inconsistent or incomplete specifications. In design and implementation,
simultaneous updates to a single module may violate that module’s consistency [14].

Undetected interteam problems tend to propagate through succeeding tasks
that build on one another, such as through design and coding tasks built on inconsis-
tent requirement specifications. Resolution of detected interteam problems leads to
the rework of some of tasks.

The Project Control sector monitors and controls a software development
project. It combines the effort perceived still needed to complete the project from the
three Manpower Needed sectors and compares it with the planned development effort
that is remaining. Corrective actions are taken when these two measures deviate sig-
nificantly from each other. Corrective actions that usually are taken by software
project managers are modeled in CSE-SD, including modifying the planned project
effort and schedule, changing the planned work force, adjusting the planned QA

and testing effort, or a combination of the three.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Manpower
allocated to
Interteam QA

PROJECT
SCOPE

Specification change/
Development change

Specification rate/

67

SECTOR SUBSYSTEM
{multiple sectors)

Development rate

Fraction of work complete
(specification and development)
PLANNING

and experienced staff

Planned project
duration and effort,

Initial # of new

Figure 4.5. Overview of the CSE-SD model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHANGE
Requirements change
Initial # of
requirements
Manpower allocated to specification,
development, QA, defect correction, and Desired
system integration and test WORK workforce
FLOW change
Staff productivity
MANPOWER Specification rate/ PROJECT
ALLOCATION Development rate/ CONTROL
QA rate
Perceived effort
“ needed to complete
the project
Manpower allocated
to defect correction
Current work force/Staff productive time NEEDED
Schedule pressure

68
4.4 Comparison with Other Related SD Models

In this section, we review four related software project system dynamics mod-
els, including Abdel-Hamid and Madnick [2-10], JPL [48-50], Madachy [52-53] and
Collofello and Tvedt [79-80], and compare CSE-SD with each one of them.

4.4.1 Abdel-Hamid and Madnick

The Abdel-Hamid and Madnick (AHM) software project system dynamics
model represents one of the first efforts in this area. The AHM model covers impor-
tant issues of software project management, presents numerous system dynamics
modeling strategies, and includes quantitative data that motivate us to employ the
system dynamics approach to study the impact of concurrent software engineering.
We have learned from their experience and include part of their modeling strategies
and used their data in CSE-SD, especially in the Staff Productivity and Development
Defects and Rework sectors. The major differences between CSE-SD and the AHM
model are summarized as follows:

First, CSE-SD addresses issues that are fundamentally different from those of
the AHM. The AHM model addresses software project management issues in gen-
eral. The model provides a generic software development system dynamics model.
CSE-SD is developed to examine the impact of concurrent software engineering on
project schedule and effort.

Second, unlike the AHM model, which does not cover the requirements analy-
sis phase, CSE-SD includes five sectors (i.e., Requirements Work Flow, Requirements
Defects and Rework, Requirements Manpower Allocation, Requirements Manpower Needed,
and Project Scope Change) to model the requirements analysis phase and address the

issues that result from requirements change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69
Third, the manpower allocation policy is different. In AHM, manpower

resources are allocated to different project-related activities in the order of training,
QA, defect rework, then development and testing. In CSE-SD, the remaining daily
manpower after training and communication overhead is first distributed to differ-
ent phases. CSE-SD includes three manpower allocation sectors (Requirements Man-
power Allocation, Development Manpower Allocation, and SIT Manpower Allocation);
each one is responsible for distributing manpower to different activities within its
responsible phase. For example, the Development Manpower Allocation sector is
responsible for the development (including design and coding) phase. A certain por-
tion of the development manpower is reserved for QA. The remaining manpower is
allocated to development defect correction, followed by development activities.
Fourth, CSE-SD breaks down project staff members” daily time into different
categories and monitors their changes over time, including project-related time,
slack time, training time, intrateam communication time, and interteam communica-
tion time. In AHM, training and communication are modeled as a single parameter.
Finally, unlike the AHM model, which is a single-team model, CSE-SD
includes the Interteam Interactions sector to model the generation, detection, and res-
olution of problems and issues caused by multiple concurrent teams that could be

avoided if done by a single team.

44.2 JPL

The Software Engineering and Management Process Simulation (SEPS) model,
developed at the Jet Propulsion Laboratory (JPL), is designed to be a planning tool to
examine the trade-offs of cost, schedule, and functionality, and to test the implica-

tions of different management policies on a project’s outcome. The purpose and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70
model structure of SEPS are similar to those of the AHM model, except that SEPS

covers the requirements analysis phase, which is not addressed in the AHM model.

The SEPS model consists of four subsystems: production, staff/effort, schedul-
ing, and budget [50]. The production subsystem models the development progress
of a software project. The staff/effort subsystem models the functions which deter-
mine the required work force (similar to AHM’s human-resource management sub-
system). The scheduling subsystem models the functions that determine the time to
complete a task and forecasts a completion time for each software life-cycle phase.
The budget subsystem keeps track of the cumulative manpower expenditures in
relation to available budget.

Like the AHM model, the SEPS model addresses issues that are fundamentally
different from those of CSE-SD. The SEPS model addresses software project manage-
ment issues in general. The model provides a generic software development system
dynamics model. CSE-SD has been developed to examine the impact of concurrent

software engineering on project schedule and effort.

4.4.3 Madachy

Madachy used the system dynamics approach to study the impact of software
inspection on project schedule, effort, and quality {52-53]. The purpose of the
Madachy model is fundamentally different from ours. We are interested in assessing
the impact of concurrent software engineering on project cost and cycle time.
Because the purpose of the model is different, the scope and the formulation of the
model therefore are different.

Like the AHM model, the Madachy model covers the design through the sys-
tem testing phases. However, in the Madachy model, development activities are

decomposed into design and coding activities. The main purpose of modeling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71
design and coding activities independently is to capture the dynamics of defect

amplification through successive phases from design through system testing, and to
highlight the importance of software inspection in lessening the impacts. Unlike the
Madachy model, the CSE-SD model covers the entire software development life
cycle, including requirements, development, and system integration and testing.

To examine the impact of CSE, especially the phase overlapping concurrency and
the synchronous concurrent subsystems concurrency, we include four sectors to model
the requirements phase (i.e., Requirements Work Flow, Requirements Defects and
Rework, Requirements Manpower Allocation, and Requirements Manpower Needed), one
sector (Project Scope Change) to capture the impact of requirements changes, and one
sector (Interteam Interactions) to address the multiple-team concurrent development
issues.

Another difference between the Madachy model and the CSE-SD model, as
well as the AHM model, is the QA manpower allocation policy. In the Madachy
model, manpower resources are allocated to inspection and rework as needed, as
opposed to the Parkinson’s manpower allocation policy employed in both the AHM
model and the CSE model, where QA is assumed to complete within a certain
period, no matter how many tasks are in the queue.

Like the CSE-SD model, the Madachy model assumes that defects are detected
only via QA (i.e., inspection) and system testing activities. Project staff members are
assumed to be experienced in QA. Unlike CSE-SD, the Madachy model does not

consider the effect of project underestimation.

4.4.4 Collofello and Tvedt
Collofello and Tvedt developed a concurrent incremental software develop-

ment (CISD) system dynamics model in their effort to propose an extensible system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72
dynamics modeling approach [80]. The CISD model consists of two groups of model

components: single-increment components and inter-increment components. The
single-increment components group models the development of an increment. [t
covers the entire software development life cycle, from requirements analysis to sys-
tem test. The issues and modeling approaches, however, are very similar to those of -
the AHM model.

The inter-increment component group deserves more attention. It consists of
four sectors that deal with inter-increment issues deserve more discussion, namely,
Synchronize Increment Start, Increment Overhead Due to Dependence, Increment Overhead
Due to Overlap, and Inter-Increment Defect Regeneration.

The Synchronize Increment Start sector determines when the development of an
increment may start. It is determined by the percentage of development and testing
completed for every other increment on which this increment depends.

The Increment Overhead Due to Overlap sector determines the amount of over-
head work of an increment caused by overlapping the development of an increment
with all other increments on which it depends. The overhead is decomposed into
perceived development overhead, perceived test overhead, underestimated devel-
opment overhead, and underestimated test overhead. Each category of overhead is
modeled as a single parameter. For example, the perceived development overhead
incurred by an increment, say Y, due to concurrent development with its dependent
increment, say X, is modeled as init pcvd inc X dev ov oh Y.

The Increment Overhead Due to Dependence sector determines the amount of
overhead work of an increment due to its dependence on other increments. Like the
Increment Overhead Due to Dependence sector, the dependence overhead is decom-
posed into four categories: perceived development overhead, perceived test over-

head, underestimated development overhead, and underestimated test overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73
For example, the perceived development overhead incurred by an increment, say Y,

due to its dependence on another increment, say X, is captured in the init pcod inc X
dev oh Y. The overhead due to dependence includes modifications, redocumentation,
review, and rework of work produced in other increments.

The Inter-Increment Defect Regeneration sector determines the defect regenera-
tion of an increment, caused by defect leakage from other increments on which this
increment depends. The percentage of defects from a prior increment that will be
leaked into this increment is determined based on this increment's relative depen-
dence on other increments. The defects leaked into an increment may be detected by
evaluation activities or, by system test, or may leak through system test into the
increment’s dependent increments.

There are three major differences between CISD and the proposed CSE-SD
model. First, CISD is an incremental software development model. It focuses on
issues that resulted from overlapping incremental development, such as defect
regeneration and overhead incurred by an increment due to reusing any one of its
dependent increment’s work products.

Second, the modeli-ng approach is different. In their model, each increment is
modeled as an instance of single-increment model. The model structure that deals
with inter-increment issues needs to be updated every time the number of incre-
ments is changed. This modeling approach is not flexible if we want to examine dif-
ferent numbers of increments or if the number of increments is large.

Third, the overhead incurred by an increment due to reusing any one of its
dependent increment’s work products, modeled as a single generic parameter, is too
simplistic. The impact on the client increments due to changes to the reused work by
the server increment is not modeled. The overhead incurred by an increment due to

overlapping activities has the same problem. We include an “Interteam Interactions”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74
sector to address the interteam issues that resulted from multiple concurrent activi-

ties. This sector models the generation, detection, and resolution of problems and

issues caused by multiple concurrent teams that could be avoided if done by a single

team.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS5
MODEL TESTING

5.1 Introduction

Before we use the CSE-SD model to assess the impact of concurrent software
engineering on project cost and development cycle time, the model has to be tested
extensively. Our testing of the CSE-SD model consists of two main steps: unit-level
testing and system-level model behavior testing.

The purpose of the unit-level testing is to examine the behavior of each individ-
ual model parameter, to make sure each one of them is soundly modeled. In other
words, we want to make sure they behave as we expect and they do not produce any
anomalous model behaviors. By focusing on each individual parameter and observ-
ing their behaviors, we can easily judge the correctness and soundness of the model-
ing.

CSE-SD is a comprehensive and complicated model which consists of more
than 400 model parameters. Therefore, it is impractical to test each one of them indi-
vidually. Instead, we focus on model parameters that are believed to have significant
effects on model behaviors and leave the testing of other parameters to the system-
level testing. We perform system-level testing to observe the behavior of the entire
model and compare our testing results with those of Abdel-Hamid and Madnick [7]
to improve our confidence level of the correctness and soundness of the proposed
CSE-SD model. Section 5.2 reports the results of unit-level testing. The results of sys-

tem-level testing are presented in section 5.3.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
5.2 Unit Testing

In this section, we conduct a set of simulation runs to examine the behavior of
each individual model parameter to make sure each one of them is soundly mod-
eled. We want to make sure they behave as we expect and do not produce any anom-
alous model behaviors. By focusing on individual parameters and observing their
behaviors, we can easily judge the correctness and soundness of the modeling. We
conduct ten test runs to test individual model parameters and sectors. They are
described below.

Test Run #1: Perfect Project

Purpose: To test the Development Work Flow sector, and the System Integration and Test

sector. The behaviors of three model parameters are observed: Cum Units Deved

(cumulative units developed), Cum Units Integrated (cumulative units integrated)

Cum Units Tested (cumulative units tested).

Assumptions:

1. Planned effort equals the actual effort expenditure.

2. No defects are involved.

3. Initial staffing factor is set to 1. That is, 100% of the project’s expected staffing is
initially allocated.

4. Project staffs spend approximately 50% of their daily time on project-related pro-
duction activities throughout the entire development life cycle.

Project scenario:

1. The project was accurately estimated to be 64 KLOC large in size (1067 develop-
ment units).

2. According to the basic organic-mode COCOMO model, 2695 person-days were
allocated to the development phase. The planned development production rate,

therefore, is 1067/2695 = 0.396 development units per person-day. The average

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
staff level is 10. Therefore, 3.96 (0.396 units/person-day x 10 person-days/day)

development units are completed each day.

3. The entire development phase took 1067/3.96 = 270 working days to complete.
As shown in figure 5.1, this is consistent with the result generated from CSE-SD.

4. System integration and test began right after the development phase was com-
pleted. As planned (according to COCOMO model), it took 90 working days to
complete. To finish system integration and test on time, 0.3 person-days, on aver-
age, is needed to integrate and test a development unit. The project took, as esti-
mated, approximately 360 working days to complete.

Conclusions: Under the above assumptions, the model performs as expected.

’ 1: Cum Units Deved 2: Cum Units integrated 3: Cum Units Tested

1 2000.00
2
3

] e — -/3.

L /
2 1
3. 0.00 Pl —
0.00 100.00 200.00 300.00 400.00 500.00
Q 8= ,. Test Run: p1 (Project Progress) Days 4:00PM Fri, Oct 16, 1998

Figure 5.1. Project progress of a perfect project. curve 1: cumulative units
developed; curve 2: cumulative units integrated; curve 3: cumulative units
tested.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78
Test Run #2: Effort Underestimation

Purpose: To test the Project Control sector. The behaviors of two model parameters

are observed: Planned Project Effort and project effort gap reported.

Assumptions:

1. No defects are involved.

2. Project staffs spend approximately 30% of their daily time on project-related pro-
duction activities throughout the entire development life cycle.

Project scenario:

There are numerous reasons that cause the manpower perceived still needed to
complete the project to deviate from that remaining in the plan. Most significant
among the reasons modeled in CSE-SD are:

1. Overestimation of staff productivity: The actual staff productive time is lower
than what is planned (i.e., work intensity level is lower than what is assumed in
planning).

2. Discovery of unplanned requirements and/or development tasks.

3. Effort underestimation: Planned effort is less than what is actually needed.

When the perceived manpower shortage exceeds a certain threshold, manage-
ment will adjust the original planned project effort. As shown in figure 5.2, at around
day 25, the “project effort gap reported” curve begins to rise. As a consequence, the
“Planned Project Effort” curve rises at around day 40. After day 130, the “project
effort gap reported” curve begins to drop, indicating a reduced gap between the
effort perceived still needed to complete the project and the remaining planned
effort. Likewise, the adjustment of “Planned Project Effort” begins to taper off until

around day 240. [t rises again due to an increased reported project effort gap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
Conclusions: The Project Control sector adjusts the planned project effort according to

the reported gap between the planned remaining project effort and the perceived
effort that is still needed to complete the project.

’ 1: Planned Project Effort 2: progect effort gap reported

1 4000.00
2 30.00

=

300000 / /\2/\ /"//r‘ / /\

RNz il

-

2
1 2000.00
z 0.00 e

0.00 90.00 180.00 270.00 360.00 450.00

ﬂ 8 g/ Test Run: p6 (Project Control) Days 11:54 PM_ Mon, Apr 12, 1999

Figure 5.2. Adjusting the planned project effort when there is a reported gap
between the perceived project effort needed to complete the project and the
remaining project effort.

Test Run # 3: Defects Involved

Purpose: To test the Development Defects and Rework sector.
Assumptions:

1. Planned effort equals the actual effort expenditure.

2. The defect densities range in value from 25 defects per KLOC to 12.5 defects per
KLOC, with an average value for the project of approximately 19 defects per
KLOC [4].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80
Project scenario:

In CSE-SD, three project factors affecting defect generation rate are modeled.
They are defect density, work force mix, and schedule pressure. In this test run, we
exclude the impact of all three factors. As illustrated in figure 5.3, when the three fac-
tors are not considered, curve 1 (nominal dev defects per KLOC) and curve 2 (dev defects
committed per KLOC) overlap. The impact of each of the three factors is individually

tested and are illustrated in figures 5.4, 5.5, and 5.6, respectively.

’ 1: nominal dev defects per KLOC 2 dev defects committed per KLOC
;-] 50.00
H 30.00

[~=1

—2\‘,\
25
_‘1\
2‘—-—_*__1_
3
10.00
0.00 125.00 250.00 375.00 500.00
ﬂa =¥ Test Rurt 023 (Nomnal Defect Densty) Days 1252 AM Tue, Apr 13, 1999

Figure 5.3. Nominal and actual development defect rate.

Test Run # 3.1
Purpose: To test the impact of defect density on development defect generation.

Assumptions: The effects of work force mix and schedule pressure are not included.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81
Project Scenario:

The rate at which the development defects are generated (dev defects committed
per KLOC) is determined by multiplying nominal dev defects per KLOC (nominal
development defects per KLOC) and dev def density effect on dev def gen (the develop-

ment defect density effort on development defect generation).

, 1: nominal dev defects per KLOC 2: dev defects commutted per KLOC 3: dev def density effect on dev def gen
;] 30.00
3 1.09

20.00 L

A
/
S

1.04 \ \
\ 3
\1 2 \
\\
\\.N :\
H
10.00
3 1.00
0.00 100.00 200.00 300.00 400.00 500.00
Qa g,’::— Test Run: p20 (The Impact of Defect Density) Days 1:19AM Tue, Apr 13, 1999

Figure 5.4. The impact of defect density on development defect generation.
curve 1: nominal development defects per KLOC; curve 2: development defects
committed per KLOC; curve 3: development defect density effect on
development defect generation.

Test Run # 3.2

Purpose: To test the impact of workforce mix on development defect generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Assumptions:

1. The impacts of defect density and schedule pressure are not included.

2. Initial staffing factor is set to 0.5. That is, only 50% of the project’s expected staff-

ing is initially allocated.

Project Scenario:

1.

The rate at which the development defects are generated is determined by multi-
plying development rate and development defects committed per KLOC. That is,
dev def gen rate = dev rate x dev defects committed per KLOC.

As illustrated in figure 5.5, at day 153, curve 5 (frac staff exp) begins to drop. This is
because management begins to bring in new staff that causes the fraction of expe-
rienced staff to drop. As we can see, curve 3 (dev defects committed per KLOC) starts
to rise and deviate from curve 2 (nominal dev defects per KLOC).

After a certain period of training and working on the project, new staff members
gradually become experienced and more productive. Therefore, curve 5 (frac staff
exp) rises slowly and reaches 1 at day 388. Curve 2 (nominal dev defects per KLOC)
and 3 (dev defects committed per KLOC) also merge at day 388. This indicates that all
new staff members are considered experienced after day 388. Therefore, the

impact of workforce mix disappears, since all staff are experienced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

, 1: dev def gen rate 2: nominal dev defects p... 3: dev defects committe. .. 4: dav rate §: frac staff exp

2]
4: 3.00
[120 /\
- 1 / ~— -
st
1: 2.00
z 20.00 < ul
i a
2*-\ \

R

2]

0.00

3} 10.00
4:

Q.20
0.00 100.00 200.00 300.00 400.00 500.00

V 8 =P Test Run: p21 (Impact of Work force Mix on De.... Days 8:58 AM Mon, Oct 19, 1998

Figure 5.5. The impact of workforce mix on development defects generation.
curve 1: development defect generation rate; curve 2: nominal development
defects per KLOGC; curve 3: development defects committed per KLOC; curve 4:
development rate; and curve 5: fraction staff experienced.

Test Run # 3.3

Purpose: To test the impact of schedule pressure on development defect generation.

Assumptions:

1. The impacts of defect density and workforce mix ratio are not included.

2. Initial staffing factor is set to 0.5. That is, only 50% of the project’s expected staff-
ing is initially allocated.

Project scenario:

1. As shown in figure 5.6, at around day 50, curve 3 (schedule pressure) begins to rise.

This is because the perceived manpower still needed to complete the project is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84
less than the planned manpower that is remaining. As we can see, curve 2 (dev

defects committed per KLOC) starts to rise and deviate from curve 1 (nominal dev
defects per KLOC).

2. Management brings in new staff at around day 153.

3. After a certain period of training and assimilation, new staff members become
more productive. They gradually close the gap between the perceived manpower
still needed to complete the project and the remaining planned manpower. As a
result, the schedule pressure is slowly reduced until around day 230.

4. When the schedule pressure is reduced, the gap between nominal dev defects per
KLOC and dev defects committed per KLOC is also reduced. However, after around
day 270, even the schedule pressure rises, and the gap between nominal dev defects
per KLOC and dev defects committed per KLOC remains roughly the same. This is
because, after day 270, the project already has completed the development phase,

and therefore, no development defects are generated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

’ 1: nomenal dev defects per KLOC 2 dev defects committed per KLOC 3: schedule pressure
A 6.00

f '\2 /
'21 30.00 \
Y 300
W] 2
-1\ \
— <= =]
H 3\ - '
: 00 3 N
3 13,00#
0.00 100.00 200.00 300.00 400.00 500.00
FAe Test Run: p24 (Impact of schedule pressurs on ... Days 201AM Tue. Apr 13, 1999
N8 =/

Figure 5.6. The impact of schedule pressure on development defects generation.
curve 1: nominal development defects per KLOC; curve 2: development defects
committed per KLOC; curve 3: schedule pressure.

Test Run # 4: Project Scope Change

Purpose: To test the Project Scope Change sector.

Assumptions:

1. Project staff members spend 60% of their daily time on project-related activities
throughout the entire project life cycle. That is, the value of the daily productive
time parameter is set at 0.6.

2. The project work force level remains unchanged. Therefore, the total daily man-

power remains constant throughout the entire project life cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Project scenario:

1. Unplanned requirements are uncovered as the project progress. As shown in fig-
ure 5.7, most of the unplanned requirements (85%) are uncovered and incorpo-
rated prior to day 200. The maximum number of unplanned requirements
uncovered daily is around 0.75 (around day 100).

2. When the unplanned requirements are uncovered, they are incorporated into the
project plan. The perception of the project size (curve 2) is increased as a result of
the discovery of unplanned requirements.

Conclusions: The Project Scope Change sector incorporates requirements changes and

updates the perceived project size as expected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

’ 1: Cum Regs Change

2 Pevd Project Size 3:reqs change rate
1 20050
pa 80.00
3 0.80 “\
\
. /
1 100.00 3 L~
4 60.00 \
3 040 /
2
1
N
3
2 \
1 0.00
2 40.00 \..
3 o.oo+ 1 .
0.00 100.00 200.00 300.00 400.00 500.00
ga @Ia Test Run: p18 (Project Scope Change) Oays 10:46 AM Tus, Apr 13, 1993

Figure 5.7. Project scope change. curve 1: cumulative requirements change;
curve 2: perceived project size (KLOC); curve 3: requirements change rate.

Test Run # 5: Staff Productive Time

Purpose: To test the Staff Productive Time sector.

Assumptions:

1

2

<.

(o]

. No development defects.

. No requirements change.

factor is set at 0.5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

. Only 50% of the project’s expected staffing is initially allocated (i.e., initial staffing

88

Project scenario:

1. As shown in figure 5.8, the average training time (curve 1) rises when new staff
members (curve 2) are brought into the project. As new staff members are
trained and gradually assimilated into the project, they become more experi-
enced. Therefore, the average training time gradually tapers off and approaches
0 at the end of the project.

2. Figure 5.9 depicts the changes in staff members” average slack time (i.e., the time
that staff members spend on nonproject-related events each day) and overtime
throughout the development project. The factor that drives the changes is the
schedule pressure. Schedule pressure occurs when the actual project progress
deviates from the planned project progress. An increased schedule pressure then

causes staff members to reduce their slack time and, if necessary, to work over-

fime.
Pt saing ume 2 New Sttt
1 050
z 10,00
1 025
z 5.00
/—\M\
g,
Y / —— \‘
.. '1\
1 000
z 0.00
0.00 100.00 200.00 300,00 400.00 500.00
Waé/’ Test Run: g3 (Oady Training Time) Days 1151 PM Tue, Apr 13, 1985

Figure 5.8. Training time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

, 1: Slack Time 2: Overtime:

)

_,__.“\

N\

1

NN

//\ I
g " - _ Kz.,.r _.

0.00 100. 300.00 400.00

QG @/‘ Test Run: pd (Overwork) Days 11:44 AM Tue, Oct 20, 1998

Figure 5.9. Slack time and overtime.

Test Run # 6: Staff Productivity

The purpose of this test run is to test the Staff Productivity sector. Specifically,
we want to observe how the average staff production rate changes throughout the
project. We consider three factors that affect staff members’ average production rate
in CSE-SD, namely, learning effect, staff exhaustion level, and schedule pressure.
Three test runs are performed to test each of the three factors.
Test Run #6.1
Purpose: To test the impact of learning effect on staff productivity.
Assumptions:
1. There are no development defects.

2. No requirements change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90
3. Only 50% of the project's expected staffing is initially allocated (i.e., initial staffing

factor is set at 0.5).

Project scenario:

1. Figure 5.10 shows the effect of learning on staff production rate. Project staff
members will increase their production rate as the project progresses, because
they learn while they work on the project.

2. Project staff members will increase their production rate from 60 LOC/person-
day in the beginning of the project to 75 LOC/person-day when the project is
completed. In other words, project staff members will increase their productivity

by 25% through the development of the project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, 1: actuat statf prod rale

3: leaming effect on prod rale

S

/

=1

P

Z nominal staft prod rate
1 200.00
2]
3 1.30
1]
2] 100.00
: 115
C . —
/ 3
1] ,,/
2-] 0.00 ‘..--—“" 3
3 1.00
0.00 125.00
q 8 =/ Test Run: p15 (Leaming effect)

Days

375.00

500.00

5:10PM Fri. Oct 16, 1998

Figure 5.10. Learning effect on staff production rate. curve 1: actual staff
production rate; curve 2: nominal staff production rate; curve 3: learning effect
on staff production rate.

Test Run #6.2

Purpose: To test the impact of staff exhaustion level on their productivity.

Assumptions:

91

1. Only 50% of the project’s expected staffing is initially allocated (i.e., initial staffing

factor is set at 0.5).

2. No requirements change.

3. Nominal staff production rate (nominal staff prod rate) is assumed to be a constant

(i.e., independent of the workforce mix).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Project scenarios:

As shown in figure 5.11, curve 3 (Exhaustion Level) begins to rise when project
staff members increase their overwork time (i.e., reduced slack time and/or work
overtime). When staff’s exhaustion level increases, their production rate will be neg-
atively affected. Curve 1 (actual staff prod rate) drops below curve 2 (nominal staff prod
rate) when staff members’ average exhaustion level rises. When their exhaustion
level reaches a maximum tolerable threshold, their production rate drops to a mini-
mum, and they are not willing to continue to accept overwork. Without the over-

work, their exhaustion level gradually will dismiss. When their exhaustion level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93
reaches zero (indicating that they are fully recovered from exhausted overwork),

they will accept overwork, if needed.

’ 1: actual staff prod rate 2 nosminat staff prod rate 3: Exhauston Level
1 200.00
Z 100.00
3 100.00
1 100.00
P 70.00
kS 50.00
) -~ 1 1) o~ 11—‘ V—
3
b 0.00 3 \
40.0C S—

§ 0,00 " —

0.00 125.00 250.00 375.00 500.00

ﬂa =P Test Rurt: p16 (Exhaustion Level) Oays 5:14PM Fd, Oct 16, 1998

Figure 5.11. The impact of staff exhaustion level on staff production rate. curve 1:
actual staff production rate; curve 2: nominal staff production rate; curve 3:
exhaustion level.

Test Run # 6.3

Purpose: To test the impact of schedule pressure on staff members” average produc-

tivity.

Assumptions:

1. Only 40% of the project’s expected staffing initially is allocated (i.e., initial staffing
factor is set at 0.4).

2. No requirements change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94
3. Nominal staff production rate (nominal staff prod rate) is assumed to be a constant

(i.e., independent of the workforce mix ratio).

Project scenarios: As shown in figure 5.12, curve 3 (schedule pressure) begins to rise
as a result of a perceived gap between the actual development progress and the
planned development progress. Curve 2 (actual staff prod rate) also rises in response
to the increasing schedule pressure. This indicates that project staff members, when
they feel a pressure in their project schedule, will work faster to make up for what
has fallen behind.

Conclusions: The data, as depicted in figure 5.12, clearly shows that staff members’

average production rate depends on the degree of project schedule pressure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

’ 1: nominal staff prod rate 2: actual statf prod rate 3: schedule pressure
1 100.00
P 80.00
3; a.00

1 70.00
2 65.00
Y 400

‘_/.-ﬂ N

[’ ‘\
/
1 40.00
2 50.00 3
3 o,mF{
0.00 100.00 200.00 300.00 400.00 500.00
’Q a g,. Test Run: p26 (Schedule Pressure) Days 10:19PM Tue. Apr 13, 1995

Figure 5.12. The effect of schedule pressure on staff production rate. curve 1:
nominal staff production rate; curve 2: actual staff production rate; curve 3:
schedule pressure.

5.3 System Testing

To place faith in simulation model-based analyses and policy recommenda-
tions, we have to know the degree to which those analyses might change as reason-
able alternative assumptions are built into the model. First, we want to make sure
our model produces similar behavior, with minor variations in equation formula-
tions and parameter values. Next, we want to know if the CSE-SD model is capable
of generating project behaviors similar to those reported in the literature. To conduct
the test, we calibrate CSE-SD against the data reported in Abdel-Hamid and Mad-
nick [7]. Our purpose is twofold: (1) to use their data and simulated results as a refer-

ence and (2) to compare our simulated results with theirs. The key statistics of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96
project (called EXAMPLE) that we compare are summarized in appendix C. More

detailed information is included in [7].

Since the requirements phase and multiple-team concurrent development
issues are not addressed in the AHM model, data is not completely available to fully
validate the entire model. The model components that are validated include Project
Control, Development Manpower Needed, System Integration and Test Manpower Needed,
Development Defects and Rework, Work Force, Staff Productive Time, Staff Productivity,
Development Manpower Allocation, System Integration and Test Manpower Allocation,
Development Work Flow, System Integration and Test, Project Scope Change, and Plan-
ning. Model components that are not validated include Interteam Interactions, Require-
ments Manpower Allocation, and Requirements Manpower Needed. These three sectors
are calibrated against the COCOMO model [22-23, 29] and are tested in chapter 7.

We compare seven key project measures, namely, perceived job size, perceived
project cost, cumulative units developed, cumulative units tested, scheduled com-
pletion date, cumulative project cost, and work force distribution pattern. The com-
parisons of these key project statistics are illustrated in figures 5.13 to 5.16. Figure
5.13 displays three key project measures: perceived project size, cumulative units
developed, and cumulative units tested. The “perceived project size” curve depicts
the pattern of how the project scope was changed over time after the discovery of
unplanned development units. The real size of the project is 64 KLOC (1067 develop-
ment units), but was initially estimated to be 42.88 KLOC (715 development units).
The “cumulative units developed” and “cumulative units tested” curves show how
the development units are completed and tested over time. The patterns of these two
curves are very close to that of the AHM, especially in the first half (prior to day 220)
of the “cumulative units developed” curve. However, after that, the CSE-SD simu-

lated project progress is faster than that of the AHM, although the difference is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97
significant. The reason that causes the difference stems from the difference in work

force level. As indicated in figure 5.16, after day 220, CSE-SD has a higher work force
level than that of the AHM. More work force means more tasks can be done within
the same period of time.

Figure 5.14 shows the cumulative project effort expenditure and the change in
estimated project cost. Our simulated “cumulative project cost” curve is almost iden-
tical to that of the AHM prior to day 200. AHM produces a higher effort expenditure
after day 200 because its work force curve reaches the peak earlier than that of CSE-
SD. In fact, the AHM simulated project has more people on board than that of CSE-
SD within the period of day 160 to 220. This explains why the project cost accumu-
lates at a faster pace in AHM than in CSE-SD.

The “perceived project cost” curve shows how management adjusts the esti-
mated project cost as a result of the discovery of unplanned development units.
Overall, the two simulated curves are similar before day 280. After that, the AHM
curve displays an immediate uprise which is not seen in the CSE-SD curve. The rea-
son for the difference lies in the difference in project control mechanisms. In CSE-SD,
when new tasks are discovered, the adjustment of estimated project costs includes
both the development cost and the system testing cost. The estimated project cost is
adjusted well before conducting the system test phase. Therefore, we do not see any
sharp change in the perception of the project cost right before conducting system
test. However, the AHM model adjusts the estimated project cost right before and
during the system test phase. The other reason that causes the difference is that CSE-
SD has a smaller project cost than that of the AHM (3620 man-days in CSE-SD as
opposed to 3795 man-days in AHM).

As illustrated in figure 5.16, CSE-SD produces a Rayleigh-curve work force dis-

tribution pattern, with a peak work force of around 11 project staff. The shape of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98
curve is very close to that of the AHM model. However, after around day 220, the

CSE-SD curve deviates from that of the AHM. The CSE-SD work force curve reaches
its peak at around day 220 and gradually tapers off to around 8 staff on board at the
end of the project. However, in AHM, the work force curve reaches its peak at
around day 190 and gradually tapers off to around 7 staff on board at the end of the

project.

1500
CSE-SD | weemmeme

AHM |eceraanns

1125

Perceived

project size,
(4
750 7! T

- 2j Cumulative
>
Cumulativ P units tested
units developed
375 ”

0 100 200 300 400 500

)
Y
"\.‘

Development Tasks

Time (working days)

Figure 5.13. Comparison of project progress of
the EXAMPLE project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 100 200 300 400 500
Time (Days)

Figure 5.14. Comparison of project cost of the EXAMPLE project.

600
CSE-SD===—
b
% 500 AI-M ------
c
=
3 |
(=™ - -
E 400 e
8 =
] —
= >
E] =
-
£ 300 /—L‘/
[75]
200
0 100 200 300 400 500
Time (working days)

Figure 5.15. Comparison of scheduled completion date of
the EXAMPLE project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

100

20

CSE-SD
AHM <osfesees

15

8
3
2 10 = = e
oy
S ==t
/ .~§
7
0
0 100 200 300 400 500

Time (working days)

Figure 5.16. Comparison of work force distribution of
the EXAMPLE project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6
BROOKS’LAW REVISITED

6.1 Introduction

Despite the recent advances in software development and management tech-
nologies, software development continues to suffer schedule delays and budget
overruns. When a project is behind schedule, software managers respond by bring-
ing people into the project. The result is, as suggested by the famous Brooks” Law
[24], a further delayed or even collapsed project. Brooks developed the law through
observation of many projects and derived the generalization. His explanation was
quite reasonable and convincing. However, it becomes a debilitating statement to
any software project manager who is faced with a late project.

In this chapter, we perform an in-depth study using the proposed CSE-SD
model. In specific, we will use CSE-SD to answer two questions: (1) What is the
impact of adding people late in a software project? Will the project be completed ear-
lier or be delayed even further, as predicted by Brooks” Law? and (2) When is the best
time to add people into a software project and how many people should be added?

The remainder of this chapter is organized as follows. Related studies on
Brooks’ Law are reviewed in section 6.2. Section 6.3 examines the dynamic implica-

tions of Brooks’ Law. The results of our study are presented in section .

6.2 Related Studies on Brooks’ Law
Brooks’ Law has been addressed extensively in the past. Gordon and Lamb

studied Brooks' Law and suggested that the best way to recover from a slipping

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102
schedule is to add more people than might be expected to be necessary, and to add

them early [38]. Three factors are considered in their study: time loss due to new staff
learning, time loss due to teaching by experienced staff, and time loss due to group
communication. They suggest adding more manpower than you think is necessary
as soon as you sense trouble, then do not change anybody’s job until the project is
finished.

Weinberg addresses Brooks’ Law from the system dynamics perspective [84].
He argues that the effect of Brooks’ Law is caused by an increased coordination and
training overhead. More coordination overhead means more work has to be done.
The increased training load on the experienced workers leads to a reduced amount
of productive work being done. The effect of Brooks’ Law can be made even worse
when management takes erroneous actions. For example, when management waits
too long to communicate the problem and attempts “big” corrective actions, this
usually leads to a project collapse.

Abdel-Hamid and Madnick studied Brooks” Law using their system dynamics
model. Two important, but unrealistic, assumptions are made in their study. First,
their model assumed that development tasks can be partitioned, but that there is no
sequential constraint among them. The development production rate depends solely
on available manpower, not on sequential constraint. In reality, if tasks have to be
done sequentially, then adding more people will not speed up the development pro-
cess, since there are not enough tasks ready for them to work on. You expend people
hours, but get little results [64]. The number of months of a project depends upon its
sequential constraints. The maximum number of staff members depends upon the
number of independent subtasks.

Another assumption is that project managers continuously will add new peo-

ple as long as they sense a shortage in manpower. In reality, project managers can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103
only add new people a few times throughout the entire project life cycle. The two

unrealistic assumptions lead to their conclusion that “adding more people to a late
project always causes it to become more costly but does not always cause it to be
completed later” ([4], [7]). The increase in the cost of the project is caused by the
increased training and communication overhead, which, in effect, decreases the pro- -
ductivity of the average team member and, thus, increases the project’s person-day
requirements. Only when the incurred training and communication overheads out-
weigh the increased productive manpower will the addition of new staff members
translate into a later project completion time.

In this chapter, we study Brooks’ Law using more realistic assumptions. The
sequential constraint of a software project is considered in our model. We also make
an assumption that people are added into the project only once throughout the entire
development life cycle, because it is not easy to obtain approvals from upper man-

agement to add manpower frequently to any project.

6.3 Dynamics of Brooks’ Law

The dynamics of Brooks’ Law starts with management bringing new staff into
a project. Three effects, as illustrated in figure 6.1, are: (1) an increase in communica-
tion and training overhead, (2) an increase in the amount of work repartitioning, and
(3) an increase in the total manpower available for project development.

When new staff are brought in, they require a certain level of training, and this
will take away part of the old staff’s productive time. Also, more people require
more communication. As a result, the total project manpower resources also
decrease. Less total project manpower means less manpower for development and
decreased average work rate. This results in project progress being delayed even fur-

ther and leads to another round in the people-hiring feedback loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104
The second effect of bringing in new people midway in the project occurs when

work needs to be repartitioned. The work currently being performed by old staff
needs to be repartitioned so some of it can be assigned to new staff. Project staff, both
new and old, have to adapt to, and learn, new tasks. The coordination overhead also
is increased, especially when the work is not well partitioned.

Another impact of bringing in new people is that more people are available to
be assigned to the project. As a result, the average work rate, as determined by the
total number of project staff and the average staff productivity, also increases. An
increase in the average work rate means work is being done at a faster pace, and
eventually will catch up with planned progress. As a result, the degree of schedule
slippage is reduced, which reduces the need to bring new people into the project.

As schedule pressure rises, part of the planned QA work might be skipped. As
a result, the defects contained within the work product remain undetected, which
leads to defect amplification. Also, under extreme schedule pressure, project staff are
prone to commit more defects than normal. The increased amount of defects means
that part of the planned manpower for development now has to be devoted to defect
correction. With less manpower available for development, the project is delayed
even further, which causes the schedule pressure to rise and triggers another defect

amplification “vicious cycle” [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Number of
new work force

+
Amount of SOI_'nl_nunicati:n fiz
work partitioning raining overhea
\+

Schedule

slippage
Time loss due to
Schedule Total daily work partitioning

pressure manpower -—
+ + \ Average

== productive time

Defects committed

QA skipped per task]
v:. \
- - + +
/-\
Project Sequential Manpower available
progress constraint Defects fofdevelopment

\rework effort
\ Average ,/

work rate

Figure 6.1. The dynamics of Brooks’ Law.

Unlike the Abdel-Hamid and Madnick model, we take the sequential con-
straint of a software project into consideration in our model. One simple approach to
model sequential constraint is to sample a software development PERT chart into a
sequence of task groups <TGy, TGy, TGs, ..., TG,>. Tasks within TG, have to wait for
all the tasks in TG, to finish before they can start. When all tasks in TG; are com-
pleted, the project is perceived to be N;/N completed, where Nj and N are the total
number of tasks in TG and in the entire project, respectively. For example, as shown

in figure 6.4 (1), we sample the PERT chart into a sequence of four task groups,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106
namely, <{Requirements, Test Plan}, {Design, Test Data, Test Drivers}, {Code, Document},

{Product Test}>. The Design task, which is in the second task group, has to wait for
the Requirements task to complete before it can start. When all the tasks within the
first task group are completed, the project is perceived to be 25% (i.e., 2/8) complete.
The project proceeds to the second task groups with 37.5% of the tasks ready for
assignment. They can be performed at the same time and in any order.

Sequential constraint, as modeled as “degree of concurrency” (DC), is defined
as the fraction of the number of tasks (including development and testing) that are
ready to be worked on and the number of tasks project staff are able to perform. As
shown in figure 6.4 (b), the number of tasks that project staff can perform is deter-
mined by multiplying “the amount of daily manpower allocated” by “staff’s average
productivity.” For example, degree of concurrency = 0.8 means only 80% of the tasks
that project staff are able to perform are ready for assignment. To simplify, we
assume that the discovered unplanned tasks are uniformly distributed among task
intervals. Therefore, the degree of concurrency remains unchanged before and after
unplanned tasks are discovered. By changing the values of this parameter, we can
examine the impact of different degrees of sequential constraint on project cost and

development cycle time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Percent Project
Completed

Contumeney

Work Rate
Tasks To Be o Tasks
a Worked Worked

fate
@(2@3
/

Fuscant project completed Average Seaff Daily Manpower
ey @sh 5% [y Productivicy Allocated
@ raska/N tashs) @mesmy @R+ 3/ e2m)
(a) (b)

Figure 6.2. Modeling sequential constraint. () A simple software development
PERT chart [22]; (b) The development and testing rate depend on sequential
constraint.

6.4 Simulation Results

We present our simulation results with a focus on two questions: (1) What is
the impact of adding people to a software project, in terms of project completion
time and cost? And, (2) When is the best time to add people into a software project,
and how many people should be added? We first address question 1: what is the
impact of adding people to a software project, in terms of project completion time
and cost? To answer this question and to compare our results with those of Abdel-
Hamid and Madnick (AHM), we use, in this study, the same manpower addition
assumption that they did. However, we add the sequential constraint factor to reveal
its effect. We continue to add people as long as there is a shortage in manpower until

a preset date. For example, as indicated in figure 6.3 (a), for a project without

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108
sequential constraint (i.e.,, DC = 1.0), if we continue to add people whenever we

sense a shortage in manpower until 36 (i.e., 0.3*120) working days remaining in the
planned project schedule, then the project is expected to complete at around day 435.
However, after 180 working days remain (i.e., 1.5¥120), management is not 100%
willing to hire enough people as desired. The total cost of the project is 3686 person-
days, as shown in figure 6.3 (b).

-4 DC-07 -O-DC-10 ~&-DC=07 -O-DC=LO
@@ : 7000
! 7
/l 6500 75
52
< 0 0
\ 2 N
o -4
S sw \ / L g 550 T
z :V 5 E \
£ j«z / 57 - X
Eeo L ; S | [N
2 - : <
.‘1 / v & 4000 =t
E 400 J:O’O"l k> 1 \k 3853
4N yg 3p) 401 3500 Q\ I
T 3 3300
0 ' 3000
0 30 @ %0 0 150 1% 20 0 k') ()] % 20 150 i80 210
Time Pararreeer Time Pxaaoeees
(a) ()

Figure 6.3. The impact of work force stability on project duration and cost. (@)
project duration; (b) project cost.

As shown in figure 6.3, a more aggressive manpower acquisition policy results
in a shorter project duration, but increases project cost. We simulated different man-
power acquisition policies by changing the value of Time Parameter (TP) and deter-
mined that 398 working days is the shortest possible schedule one can achieve for

this specific project. Time Parameter is defined as the sum of the time to hire new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109
staff (hiring delay) and the time to train and assimilate new hires (assimilation

delay). Our results indicate that Brooks” Law holds only when the Time Parameter is
fewer than 40 working days for a medium-sized COCOMO organic-mode project
EXAMPLE. Our result is very similar to that of AHM.

The trend for the DC = 0.7 project (i.e., a project with a certain degree of
sequential constraint) is similar to that of DC = 1.0 project; project duration continues
to decrease when new work force is added. However, management pays the price of
increasing project cost. For projects with certain degree of sequential constraint (i.e.,
DC =0.7), Brooks” Law holds when the Time Parameter is less than 60 working days-
about one month earlier than that of the DC = 1.0 project (40 working days). This
implies that sequential constraint does play a role in this situation. If management
fails to sense the shortage in manpower and does not make a timely decision to add
work force, then the project will be delayed further, especially if there is a certain
degree of sequential constraint among development tasks. Project cost continues to
rise when new people are added, as illustrated in figure 6.3 (b). Project cost increases
nonlinearly when Time Parameter is less than 90 working days. This implies that
adopting a more aggressive manpower acquisition policy late in the project will cost
more.

Figure 6.4 shows the impact of sequential constraint on project duration and
cost. As expected, as the degree of sequential constraint increases (degree of concur-
rency decreases), project duration will increase, and so does the project cost. How-
ever, project duration and cost increase nonlinearly when DC is less than 0.5. The
result indicates that a tighter sequential constraint has a stronger negative impact on

project duration and cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

g

650

600

E
PEak
F/,ﬁ/,,
g g
e

g

S752

550
17

500 . :] ' e 4758 :
: : \u\‘: b I N
. 435 415 {500 - ‘ :
, S : v ‘

Project cost (man-days)
g
4
3

Piaject duration (working days

450

400 . 3500

02 o3 04 05 s a7 o8 09 1 1 12 0.2 03 04 0.5 0.6 0.7 o8 0.9 1 1.1 L
Dcgree of conaurency Degree of concurrency
(a) ®)

Figure 6.4. The impact of degree of concurrency and project duration and cost.
(a) project duration; (b) project cost.

We next address question 2: what is the best time to add people into a software
project and how many people should be added? Unlike the AHM model, we take the
sequential constraint of a software project into consideration. Besides, to answer the
question, we make a more realistic assumption that people are added into the project
only once throughout the entire development life cycle. We conducted 24 simulation
runs; 12 on projects with perfectly partitionable tasks (PPT) [24] and 12 on projects
with a certain degree of sequential constraint. The results are summarized in figure
6.5.

At the specified milestone date, the desired work force that is needed to com-
plete the project on time is brought into the project. For example, at day 20 (one
month after the project was launched), the desired new work force perceived needed

to complete the project on time is 4.16 for PPT projects (i.e., DC = 1.0). This is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111
because, in the beginning of the project, there are only four engineers on board,

while eight engineers are expected (i.e., 50% understaffed). Management will need
to bring in the other four people as initially planned plus extra manpower to make
up for the delayed work caused by having four engineers doing the work that is
expected by eight engineers. In this specific organic-mode project, there is a thresh-
old time T-about one-third (i.e., 140/472) of the development life cycle-before which
adding people into a software project will not extend project duration. However,
after the threshold time, adding people to the project will cause the scheduled com-
pletion date to extend.

The DC = 0.8 project also has a threshold time at day 160; one month (20 work-
ing days) later than that of the DC = 1.0 project. However, it is also at about one-third
(i.e., 160/508) of the entire development life cycle. After simulating projects with dif-
ferent degrees of concurrency (from DC = 0.5 to 1.0), we found that the threshold
time will shift forward as the degree of concurrency increases. But the one-third
point does not change. As shown in figure 6.5 (b), adding people into a software
project will, in general, cause the project cost to increase.

There could be numerous alternatives between the two extreme manpower
acquisition policies we use in our simulation runs, namely, continuous manpower
acquisition policy and one-time manpower acquisition policy. The outcomes of
adopting different manpower acquisition policies are expected to fall between our
simulated results. For organic-mode projects, we predict a project schedule-effective

time range from one-third of the project to halfway into the project life cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

—0—DC=1.0 —&— DC=0.8 —0—DC=1.0 —a—DC =038

550 5500 ; ; ;
§ 540 *\ £ 5000 —— /
5 y: A
T < : : i
£ s \,x{é § 4s00 ——— ;
g 500 8 4000
S 480 |-o—oto=0. el
e 5 3500

460 &

3000

0 50 100 150 200 250 0 50 100 150 200 250

Restaffing date Restaffing date

(@) (b)

—0—DC=1.0 —— DC=08
28 f—
) /A
20

m Vi
12

8 A "X/U
4 %

Project duration (working days)

0 50 100 150 200 250
Restaffing date
(©)

Figure 6.5. Impact of restaffing time on project duration, cost, and number of
needed work force. (a) project duration; (b) project cost; (c) number of needed new
work force.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113
6.5 Summary

We performed an in-depth study of Brooks’ Law using the CSE-SD model. The
results of the study are based on three sets of simulation runs with different assump-
tions. First, we used the same assumptions as those of AHM: (1) project tasks can be
partitioned, but there is no sequential constraint among them; and (2) management
continuously will add new people as long as they sense a shortage in manpower.
Under these assumptions, our results are consistent with those of AHM, namely,
adding more people to a late project always causes it to become more costly but does
not always cause it to be completed later.

Next, we used a more realistic assumption by considering sequential con-
straint. We found out that continuously adding people to a late project makes it later
and more costly. This confirms Brooks’ Law. However, these results are not consis-
tent with those of AHM's. This implies that sequential constraint does play a role in
project development.

Finally, we added another realistic assumption that; people are added to a
project only once throughout the entire project life cycle because it is difficult to
obtain frequent manpower addition approvals from upper management. We found
that there is an optimal time range for adding people without delaying a project. It
ranges from one-third to halfway into the project development. If software project
managers cannot make a timely and accurate decision on project restaffing prior to
halfway into the project, the project has a high probability of being delayed, espe-
cially when task sequential constraints are involved. However, adding people dur-
ing the project always causes the project cost to increase.

In summary, it is always costly to add people to a late project. When sequential

constraint is significant, adding people late in a project will make it later. We also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114
have found, in this study, an optimal time range for adding people without delaying

a project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7
ON THE IMPACT OF CONCURRENT SOFTWARE
ENGINEERING
7.1 Introduction

In this chapter, we conduct a set of simulation experiments using the CSE-SD
model. The objective of the experimentation is twofold: (1) to further demonstrate
the capability of CSE-SD to serve as a management policy exploration tool; and (2) to
investigate the impact of concurrent software engineering on project cost and devel-
opment cycle time. Specifically, the following two sets of questions are addressed:

1. What are the effects of the “phase overlapping” development approach on project
cost and development cycle time? Will phase overlapping reduce project dura-
tion and/or cost? What is the optimal degree of phase overlapping in terms of
project cost and development cycle time? In other words, what are the best
degrees of phase overlapping that lead to shortest project duration and/or low-
est project cost?

2. What are the effects of the “synchronous concurrent subsystems (SCS)” develop-
ment approach on project duration and cost? Will the SCS approach reduce
project duration and/or cost? For a given project, what is the optimal number of
subsystems (subteams) that lead to the shortest project duration and lowest cost?

Before we use the CSE-SD model to answer the above questions, we need to
select appropriate values for model parameters. To assess the impact of concurrent

software engineering practice in general, we will calibrate CSE-SD against the

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116
COCOMO model. Calibration refers to assigning specific values to model parame-

ters that produce project behaviors similar to those predicted by COCOMO.

Model calibration is presented in section 7.2. The first set of questions regard-
ing the effects of the “Phase Overlapping” development approach is addressed in
section 7.3. The effects of the “Synchronous Concurrent Subsystems” development
approach are investigated in section 7.4 where the second set of questions are

addressed.

7.2 Model Calibration
To examine the effects of the Phase Overlapping concurrent development

approach, we calibrate CSE-SD against the COCOMO 2.0 model [23].

7.2.1 The BASELINE Software Project

We use a baseline COCOMO 2.0 (called BASELINE) project as a reference to
examine the effects of the Phase Overlapping development approach using the CSE-
SD model. BASELINE is a 128 KLOC large project with the values of the seventeen
COCOMO 2.0 cost drivers and five scale factors are set to “nominal.” In COCOMO,
the software development process is divided into four major phases: Plan and
Requirements, Product Design, Programming, and Integration and Test. The overall
phase distribution of project effort, schedule, and full-time-equivalent software per-
sonnel (FSWP) for the BASELINE project is summarized in table 7.1.

COCOMO-estimated project development effort, including the effort spent in
the Plan and Requirements phase, the Product Design phase, the Programming
phase, and the Integration and Test phase, is 704.9 person-months (i.e., 46.0 + 112.0 +
3624 + 184.5), or 13,393 person-days (PDs).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Table 7.1. Phase distribution of project effort, schedule and personnel

PHASE EFFORT (person-months) | SCHEDULE (month) | FSWP
Plans and Requirements | 46.1 (876 person-days) 6.0 7.7
Product Design 112.0 (2128 person-days) 7.4 15.2
Programming 362.4 (6886 person-days) 12.0 30.2
- Detailed Design 158.1 - -
- Code and Unit Test 204.2 - -
Integration and Test 184.5 (3506 person-days) 7.9 233

7.2.2 Mapping COCOMO Development Activities to CSE-SD

COCOMO includes eight major activities: requirements analysis, product design,
programming, test planning, verification and validation, CM/QA, project office functions,
and manuals [22]. The requirements analysis activity is modeled in the Requirements
Work Flow sector. The product design and programming activities are mapped to the
Development Work Flow sector. The verification and validation activity performed dur-
ing the Integration and Test phase is modeled in the System [ntegration and Test sector.

The QA activity modeled in CSE-SD includes the verification and validation and
CM/QA activities performed in COCOMO's Plans and Requirements, Product Design,
and Programming phases. The test planning, project office, and manuals activities are
considered part of the requirements specification and software development in CSE-
SD. For example, during the requirements phase, the manuals activity dealing with
outlining portions of users” manual is considered part of a requirements specifica-
tion activity.

The distributions of project effort, schedule, and personnel of the eight differ-
ent COCOMO activities in each phase are shown in tables 7.2, 7.3, 74, and 7.5,
respectively. For example, table 7.3 shows the breakdown of project effort, schedule,

and personnel in the “Product Design” phase. In the “Product Design” phase, 14.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118
person-months of effort are spent on the requirements analysis activity, 45.9 person-

months of effort are spent on the product design activity, 15.1 person-months of effort
are spent on the programming activity, and so on.

Based on the above COCOMO-to-CSE-SD mapping and the data summarized
in tables 7.2 to 7.5, equivalent CSE-SD distributions of project effort and schedule are
summarized in tables 7.6 to 7.11. The data listed in table 7.6 show the effort, sched-
ule, and personnel distribution of the BASELINE project without requirements
change. The data are derived by setting the COCOMO 2.0 BRAK (breakage percent-
age) factor to 0%. They are calculated as follows:

« Requirements phase
1. Requirements specification effort = (20.8 + 1.8 + 5.8 + 2.3) person-months * 19
working day/month = 583 person-days
2. Requirements QA effort = (3.5 + 1.4) person-months * 19 working days/
month = 93 person-days
3. Development effort spent in the Requirements phase = (8.1 + 2.5) person-
months * 19 working days/month = 201 person-days
» Development phase
1. Software development effort = ((45.9 + 15.1 + 6.7 + 11.2 + 7.8) + (29.0 + 204.7 +
19.9 + 21.7 + 18.1)) person-months * 19 working day/month = 7,222 person-
days
2. Development QA effort = ((8.4 + 2.8) + (30.8 + 23.6)) person-months * 19
working days/month = 1246 person-days
3. Rework: 19 * (14.0 + 14.5) = 542 PDs
e System Integration and Test phase
1. Integration and test effort = (71.9/2 + 5.5 + 52.6 + 12.9 + 14.8 + 12.9) person-
months * 19 working days/month = 2,560 person-days

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119
2. Rework: (4.6 + 9.2 + 71.9/2) person-months * 19 working days/month = 946

person-days
The phase distributions of project effort under different degrees of require-
ments changes (from 10% to 40%) are calculated following the same procedure. They

are summarized in tables 7.7 to 7.11.

Table 7.2. The breakdown of project effort, schedule, and personnel
in the Plan and Requirements phase

Activity Effort (person-month) | Schedule (month) FSWP
Requirements Analysis 208 6.0 35
Product Design 81 6.0 13
Programming 25 6.0 0.4
Test Planning 1.8 6.0 03
Verification and Validation 35 6.0 0.6
Project Office 5.8 6.0 1.0
CM/QA 14 6.0 02
Manuals 23 6.0 04

Table 7.3. The breakdown of project effort, schedule, and personnel

in the Product Design phase
Activity Effort (person-months) | Schedule (month) | FSWP
Requirements Analysis 14.0 74 19
Product Design 45.9 74 6.2
Programming 151 74 21
Test Planning 6.7 74 0.9
Verification and Validation 8.4 7.4 11
Project Office 11.2 74 15
CM/QA 28 74 04
Manuals 7.8 74 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Table7.4. The breakdown of projecteffort, schedule, and personnel

in the Programming phase
Activity Effort (person-month) |Schedule (month)| FSWP
Requirements Analysis 145 12.0 1.2
Product Design 29.0 12.0 24
Programming 204.7 12.0 17.1
Test Planning 19.9 12.0 1.7
Verification and Validation 30.8 12.0 26
Project Office 217 120 1.8
CM/QA 23.6 12.0 20
Manuals 18.1 12.0 1.5

Table 7.5. The breakdown of project effort, schedule, and personnel
in the Integration and Test phase

Activity Effort (person-month) | Schedule (month) FSWP
Requirements Analysis 4.6 79 0.6
Product Design 9.2 79 12
Programming 719 79 9.1
Test Planning 5.5 79 0.7
Verification and Validation 52.6 79 6.6
Project Office 129 79 1.6
CM/QA 148 79 19
Manuals 129 79 1.6

Table 7.6. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK = 0%

Activity \ Phase Requirements | Development SIT
Specification 583 - -
Development 201 7,222 -
Integration and Test - - 2,543
QA 93 1,246 -
Rework - 542 945

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7.7. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK =10%

Activity \ Phase Requirements | Development SIT
Specification + Rework 652 - -
Development 224 8,067 -
Integration and Test - - 2,857
QA 103 1,391 -
Rework - 604 1,055

Table 7.8. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK =20%

Activity \ Phase Requirements | Development SIT
Specification + Rework 718 8,919 -
Development 249 - -
Integration and Test - - 3,157
QA 114 1,537 -
Rework - 665 1,169

Table 7.9. CSE-SD-equivalent activity distribution of effort
(person-months) by phase: BRAK =25%

Activity \ Phase Requirements | Development SIT
Specification 754 - -
Development 260 9,344 -
Integration and Test - - 3,312
QA 120 1,609 -
Rework - 699 1,226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Table 7.10. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK =30%

Activity \ Phase Requirements | Development SIT
Specification + Rework 789 9,774 -
Development 272 - -
Integration and Test - - 3,467
QA 125 1,685 -
Rework - 732 1,282

Table 7.11. CSE-SD-equivalent activity distribution of effort

(person-months) by phase: BRAK =40%

Activity \ Phase Requirements | Development SIT
Specification + Rework 859 - -
Development 296 10,648 -
Integration and Test - - 3,775
QA 135 1,835 -
Rework - 798 1397

122

7.2.3 Calibrate CSE-SD Against COCOMO

We next calibrate CSE-SD to produce similar project behaviors as those of
COCOMO for the BASELINE project, including the breakdown of project effort,
schedule, and full-time-equivalent software personnel.

To produce similar software personnel distribution patterns, we adjust the val-
ues of two CSE-SD parameters: planned WF (the originally planned work force) and
staffing plan stability (the degree that project management stays with the original
staffing plan). These two parameters, together with the desired work force level (tar-
get WF) as determined in the Project Control sector, determine the project staff level

needed to complete the project on the scheduled completion date.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123
The planned WF parameter, as depicted in figure 7.1, shows the original staffing

plan as a function of project development time. For example, at the beginning of the
project (Time = 0), the planned full-time-equivalent software personnel is six. The
staffing plan stability parameter is modeled as a function of the ratio of project time
remaining and WF production delay (average time to hire and assimilate new staff
members), as illustrated in figure 7.2. For example, if the WF production delay is 120
working days, and there are 600 working days remaining to complete the project
(i.e., the project time remaining/ WF production delay ratio is 600/120 = 5), then the
value of the staffing plan stability parameter is 1. In other words, management will
stay with the original staffing plan (i.e., the project staffing plan is stable). However,
when the value drops below 1, management will consider changing the original
staffing plan and either hire new people or transfer staff members out of the project,

depending on the actual progress of the project.

40

35
2
2 25
: /
1]
g2 20 |-
: /
§ 15 /
[£4]
£ 10 /

5

0

0 100 200 300 100 500 600 700

Time (working day)

Figure 7.1. Planned work force distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

-
N

—

—
i
/

[
w

o
o

Staffing plan stabilit

R

-

05 1 15 2 25 3 35 4 45 5
Project time remaining / WF production delay

<
<

Figure 7.2. Staffing plan stability.

C—31COCOMO ——CSE-SD

35
30

25
20 // (1T

10 /’ o

FTE Software Personnel
—t
a
|

0 60 120 180 240 300 360 420 480 540 600 633
Time (working day)

Figure 7.3. Comparison of FTE software personnel distribution.

Another thing to consider is to adjust staff members’ average productivity to

match COCOMO. In CSE-SD, a requirement unit is assumed to be 125 LOC large; a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125
development unit is assumed to be 60 LOC large [7]. The total number of require-

ments and development units is 1,024 (128,000/125) and 2,134 (128,000/60), respec-

tively. The average productivities of different activities are:

» Requirements specification: 1,024/583 = 1.76 requirements per person-day.

e Development: 2,134/(7,222+201) = 0.287 development units per person-day.

» Integration and testing: 2,134/2,543 = 0.839 units integrated and tested per per-
son-day.

Table 7.12 and figure 7.4 show a close resemblance between the data generated
from CSE-SD and those of COCOMO for the BASELINE project with 0% require-
ments changes. For different degrees of requirements changes, we follow the same
procedure to produce a similar behavior for the BASELINE project. The biggest per-
centage difference in project effort between COCOMO and CSE-SD is less than 1.2%
(comparing the COCOMO column and the C1xR1xD1 column in table 7.13). By cali-
brating CSE-SD against COCOMO under different degrees of requirements changes
to produce similar nominal project behaviors, we are more confident about the data
generated from CSE-SD when we change the values of the two manpower allocation
parameters (fraction daily manpower to Requirements phase and frac dev manpower to

SIT) to simulate different degrees of phase overlapping.

Table 7.12. Comparison of project effort (person-days)

COCOMO CSE-SD % difference
Project effort 13,393 13,366 0.22%
- Requirements 676 681 0.74%
- Development 9,211 9,246 0.38%
- Integration and test 3,506 3,440 1.38%
Project duration 633 635 0.16%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

o COCOMO ——CSE-SD

14000 : : — %
12000 . , : ‘ ‘

10000

8000

6000 //
1000 /O/
2000 \

0 100 200 300 400 500 600 700
Time (working day)

Project effort (person-days)

Figure 7.4. Comparison of cumulative project effort.

7.3 Impact of Phase Overlapping

Three counteracting factors determine the outcome of a phase overlapping-
based software development project: (1) the degree of phase overlapping; (2) the
degree of across-phase communication; and (3) the stability of upstream information
and downstream sensitivity to changes to the information. As discussed in section
4.2.1, increasing the degree of phase overlapping reduces project development time,
because more work is done simultaneously. However, an increased across-phase
communication overhead and rework tasks in downstream phase might erase the
benefits gained by doing things in parallel. In this section, we want to determine (1)
the degree of phase overlapping that has the shortest project development time and

(2) the degree of phase overlapping that has the lowest project cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127
7.3.1 Modeling Phase Overlapping

Phase overlapping occurs when activities of different phases are performed at
the same time. Phase overlapping means project manpower resource must be allo-
cated to different phases so that activities in different phases can be performed
simultaneously. Across-phase manpower allocation is controlled by two parameters:
frac daily MP to reqs phase and frac dev MP to SIT. The frac daily MP to reqs phase param-
eter determines the fraction of the total daily manpower to be allocated to the
Requirements phase. The remainder of the manpower, after allocating to the
Requirements phase, is shared by the Development phase and System Integration
and Test phase. The distribution of the remaining manpower to these two phases is
controlled by the frac dev MP to SIT parameter.

The two manpower allocation parameters are modeled as graph functions, as
shown in figure 7.5. By adjusting the values of these two parameters, we can simu-
late different degrees of phase overlapping and investigate their impacts on project
cost and development cycle time. To examine the impacts of phase overlapping
under different degrees and patterns of requirements changes, we select three differ-
ent representative phase overlapping modes:

e R1 x D1: It represents a nominal COCOMO project.

e R2x D2: It represents a modest degree of phase overlapping.

» R3 x D2: It represents a high degree of phase overlapping.

The general shapes of R1, R2, R3, D1, and D2 are shown in figure 7.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Rl R2 R3 ol

-
[N
R

[

[=}
»
-]

L Nt

o o
o o W
T]
i 1
’
1
U
il
H I
1
P
A
/A
v}
i e
)
i
i
y

Frac daily manpower 10 Requirements Phase
&
i e -
Fraction dev manpower to SIT
[=]
o\

0 02 04 06 08 ! 0.7 0.75 0.8 0.85 09 0.95 i
Fraction specification pesceived completed Fracion devek pp—
(a) (b)

Figure 7.5. Modeling phase overlapping; () fraction daily ma}nrpower to
requirements phase; (b) fraction development manpower to SIT.

7.3.2 Modeling Requirements Changes

The stability of the upstream information (requirements) and the downstream
sensitivity to the changes in the exchanged information is another critical factor that
determines the outcome of a phase overlapping project. Requirements changes are
the major cause of software project delays and cost overruns, especially under the
situation of phase overlapping.

When a requirement is changed, you have to alter design to meet the changed
requirements. You might have to throw away part of the old design, and, because it
has to accommodate existing code, the new design will take longer than it would
have without the change. You also have to discard code and test cases affected by

the requirement change and write new code and test cases. Even code that is other-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129
wise unaffected must be retested to make sure the changes in other areas have not

introduced any new errors [56].

In CSE-SD, rework overhead is partitioned into two parts: (1) the overhead that
results from the increase of development workload; and (2) the overhead incurred
by the requirements change to take care of the affected work products. For example,
a requirements change is treated as the increase of one unit of regular work plus the
overhead to adjust the design, code, test cases, and related documents that are
affected by the change, whether it is added, modified, or deleted. With a 30%
increase in project size, the project effort is expected to be 30% higher than that with-
out a requirements change (13,393 person-days for the BASELINE project). Without
considering the rework overhead, a project 128 KLOC large with a 30% requirements
change is expected to need 1.3 * 13,393 = 17,411 person-days. COCOMO estimate of
project effort with 30% requirements changes is 18126 person-days. The difference
between 18,126 person-days and 17,411 person-days (i.e., project effort without con-
sidering rework overhead) is 715 person-days (this is the rework overhead).

Rework overhead is captured in the Change Rework Overhead model parameter.
Change rework overhead is accumulated at the rate of daily MP to change rework, as
determined by three parameters: nominal rework overhead, rework cost ratio, and daily
MP factor. For example, if project staff members spend 50% of their daily time on
project-related production work, then a requirements change with 0.5 person-day
nominal rework overhead will cause them to spend one full day (i.e., 0.5/50%) to
rework all affected work products.

On large projects, the cost to rework a requirements during architecture design
is typically five times as expensive to rework as it would be if it were done during
the requirements analysis phase; during coding; it is 10 times as expensive; during

unit or system test, it is 20 times as expensive ([22], as cited in [56]). The rework cost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130
ratio is shown in figure 7.6. The rework cost due to a requirements change is deter-

mined by multiplying nominal rework overhead by the rework cost ratio.

Reworh coet ratie

Requsements Dwaign Coang Systam Text

35

Requirements change per da
v VI
|

(133

Figure 7.7. Three patterns of requirements change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131
Figure 7.7 shows three different requirements change patterns. These three

curves represent different patterns of how system requirements are stabilized. Curve
C1 represents the situation where most of the requirements changes occur in the
requirements analysis phase. Curves C2 and C3 indicate the situations where most
of the requirements changes occur in the design and coding phases, respectively. By
combining these three requirements change patterns with the three different modes
of phase overlapping (i.e., R1xD1, R2xD2, and R3xD2), we can simulate different
project scenarios to assess the impact of the phase overlapping concurrent develop-

ment approach.

7.3.3 Simulation Results

After calibrating CSE-SD against COCOMO, we use the data of the BASELINE
project as a reference to examine the effects of the phase overlapping concurreht
development approach. We perform nine sets of simulations (from the C1xR1xD1
combination to the C3xR3xD2 combination) for each level of requirements changes,
ranging from 10% to 40% requirements changes.

Figure 7.8 illustrates the effects of the Phase Overlapping concurrent develop-
ment approach on project development cycle time. The results of the three different
phase overlapping modes are summarized in tables 7.13 to 7.15. The same results are
depicted in figure 7.10. Among the nine combinations of requirements change pat-
terns and phase overlapping that we examine (from CIxR1xD1 to C3xR3xD2), the
C1xR3xD2 combination has the shortest project development cycle and lowest
project cost. For example, the shortest project development cycle for a 128 KLOC
project with 20% requirements changes is 649 (marked with *) working days. The

lowest project cost is 15,547 person-days.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132
Our simulated results show that when most of the requirements changes occur

during the requirements analysis phase (the C1xRxD curves), phase overlapping can
improve the development process both by reducing project effort and development
cycle time. For example, the aggressive (R3xD2) phase overlapping mode helps to
cut the project development cycle time from 682 working days to 649 working days,
which is about a 4.8% (33/682) improvement even when the requirements change is
20%, as long as the requirements changes occur in the requirements analysis phase.
Attempting a higher degree of phase overlapping under the same project situation
also reduces project effort. The savings in this case is about 5.9% (from 16528 person-
days to 15547 person-days)

When most of the requirements changes occur during the product design
phase or later, phase overlapping may not be helpful. For example, the modest
degree of phase overlapping (R2xD2) reduces project development cycle time only
when requirements change is below 30%. Aggressive phase overlapping (R3xD2) is
helpful only when requirements change is below 10%. In both cases, the improve-
ments in project development cycle time are not significant. On the other hand, soft-
ware project managers have to pay the price of increased project effort in attempting
phase overlapping.

As predicted, late requirements changes cause project duration and cost to
increase, irrespective of the degree of phase overlapping. The percentage increase in
project cost and development cycle time (100x(C3-C1)/C1) due to late requirements
changes under different degrees of requirements changes are shown in figure 7.8 and
7.9, respectively.

When requirements changes exceed 25%, the R2xD2 case (modest degree of
phase overlapping) is less sensitive to late requirements changes in terms of project

duration increase than the R1xD1 case (nominal case). The R2xD2 case has a 10%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133
duration increase as opposed to the 15% increase in the R1xD1 case when require-

ments changes is 40%.

The effort penalty due to late requirements changes shows a slightly different
trend. All three phase overlapping cases, including the nominal case, display similar
project effort increase patterns, especially when the requirements change is below
10%. Under all situations, the R1xD1 case (nominal case) is least sensitive to late
requirements changes in terms project effort increase. Our results show that the
R2xD2 case (modest degree of phase overlapping) is least sensitive to late require-
ments changes in terms of project duration increase and the R1xD1 case is least sen-

sitive to project effort increase.

®R1 x D1 @R2x D2 AR3 xD2
e 25
2
-
320 AS
g
€15 .
£ A
a
210 &
2 A .
€ 51| L
g %]
g]
c. 0 N
0 10 20 30 40 50
Percent requirements changes

Figure 7.8. Project duration increase due to requirements changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O R1xD1 BR2xD2 AR3xD2

45
= 40 4
]
S 35
‘g a
2 30 — A
5 o
c 25
.é. ‘ -
g 20 n o
£ 15 3 <
g 10
7
& 5

0@

0 10 20 30 40 50

Percent requirements changes

Figure 7.9. Project effort increase due to requirements changes.

Table 7.13. Nominal project (R1xD1) with different requirements

change patterns
Requirements change COCOMO CIxRIxDI C2xRI1xDl C3xR1xDl
0% 633 (13,393) 635 (13,366) 635 (13,366) 635 (13,366)
10% 657 (14,951) 658 (14,820) 664 (15,757) 677 (16,569)
20% 682 (16,528) 682 (16,366) 681 (17.566) 704 (18,923)
30% 705 (18,126) 706 (17,965) 714 (19,738) 755 (21,341)
40% 726 (19,743) 728 (19,520) 762 (22,681) 837 (24,967)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

Table 7.14. Modest phase overlapping (R2xD2) with different
requirements change patterns

Requirements change | COCOMO C1xR2xD2 C2xR2xD2 C3xR2xD2
0% 633 (13,393) | 618(12,951) | 618 (12,951) | 618 (12,951)
10% 657 (14,951) | 645 (14,502) | 653 (15,495) | 654 (16,167)
20% 682 (16,528) | 668 (16,027) | 674 (17,435) | 695 (19,207)
30% 705 (18,126) | 697 (17,707) | 702 (19,445) | 731 (21,916)
40% 726 (19,743) | 720 (19,273) | 747 (22,312) | 787 (25,581)

Table 7.15. Aggressive phase overlaplging (R3xD2) with different

requirements c

ange patterns

Requirements change | COCOMO Cl1xR3xD2 C2xR3xD2 C3xR3xD2
0% 633 (13,393) | 614 (12,879) | 614(12,879) | 614 (12,879)
10% 657 (14,951) | 628 (14,078) | 642 (14,934) | 654 (16,050)
20% 682 (16,528) | 649 (15,547)* | 678 (16,979) | 695 (19,006)
30% 705 (18,126) | 679 (17,231) | 710(19,090) | 770 (22,558)
40% 726 (19,743) | 707 (18,893) | 774 (22,699) | 850 (26,699)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x CIsRIxDI e ee-=-- CoCcoMO
—a— C2xR1zD1 —e—C3xR1xD1}
%50
825 /L
< xao —
.
i 775
i 7s0
£ 725
é 700 |
H 675
T 650
625
600
[} 10 20 30 40 sa
Pescent requiccments chanpe
(a)
""" cocoMO X CizxR2xD2
—&— C2xR2xD2 —&— C3xR2xD2
X00 >
2. 730
37 Z
«» 760
£ S a :
E 740 = - S
2 720 —=% H
£ 700 e 3 £
3 680 /,*' <
3 60 |- N i
2 640 pens - £
= 60
TR
0 10 20 30 10 50 60
Pereent requircments change
(c)
----- COCOMO X CixR3xD2
—a&— C2xR3xD2 -—®— C3xR3xD2
u7s
850 ot
Z K25 —
% xon :
£ s :
- A
< 750 - T
2728 - —=
2 oo P x
E e7s e x
S 650 e
625 x
600
[} 10 20 30 40 50 60

Percent requirements change

(e)

136

----- COCOMO X CixRixD1
—a&— C2sR1:D1 —e— C3xR1xD1
26000
.-
= 24000 —
= a A
g 22000 -
2 o000
i_- pu “ - I3 3
£ 18000 & - *
g 16000 : X
s -
YT — =
12000 L
[10 20 30 40 50
Percenr requicements change
(b)
----- COCOMO X CisR2:D2
—dx— C2xR2xD2 —®— C3zR2:D12
26000 - N
: /
24000 ~ /
22000 - - A
20000 - — o
K & R 3
18000 Y ..__—)’(.
16000 ~ ;. = —
- Pt
1uaa -
. 9
12000
] 11 mn 3 40 50 i}
Peteent requirements change
(d)
----- cocoMmo X CixR3xD2
—a— C2xRUD2 —— C3xR3xD2
28000
[
26000 //
2 24000 -
©
: A
S 22000 A
4 P e
£ 20000 < -
E ' 4 & . x
- ..
S 18000 —
'§‘ - A" ox
& 16000 = X
Py Y
14000 K
12000 p
0 10 20 30 40 50
Percent requirements change

1)

Figure 7.10. The effects of phase overlapping on project effort and
development cycle time; (#) Project duration (R1xD1); (b) Project effort (R1xD1);
(c) Project duration (R2xD2); (d) Project effort (R2xD2); (e) Project duration

(R3xD2); () Project effort (R3xD2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137
7.4 Impact of Synchronous Concurrent Subsystems

In this section, we assess the impact of the SCS concurrency with a focus on
two questions: (1) Is the SCS concurrency a feasible approach? Will it reduce project
effort and development cycle time? and (2) What is the optimal number of sub-
systems (subteams) that leads to the lowest project effort and shortest development
cycle time?

As discussed in section 4.2.2, three counteracting factors are critical in deter-
mining the outcome of a SCS project, namely, how the project is decomposed (i.e.,
the number of subsystems), the incurred communication overhead due to project
decomposition, and the incurred extra rework due to interteam problems.

Grouping developers into teams affects the overall communication overhead.
Consider the case of grouping N developers into t equal-sized teams of n (i.e., N/¢t)
members per team. The possible number of communication links is the sum of the
number of interteam communication links plus the number of intrateam communi-
cation links. The possible number of communication links among t teams is #(t-1)/2,
and the number of communication links among n members within a team is
n(n-1)/2. Since there are ¢ teams, the total number of intrateam communication links
is (tn)(n-1)/2. The interteam and intrateam communication overheads increase in
proportion to £ and tn?, respectively.

Breaking a single large team into multiple smaller teams decreases the amount
of intrateam communication overhead. However, for a given number of developers,
increasing the number of concurrent teams will increase the amount of interteam
communication overhead. It is critical to determine an optimal number of concurrent

subteams to minimize the overall communication overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138
7.4.1 Determining Communication Overhead

The overall average time that project staff members spend on communicating
with other members of the project each day is captured in the overall communication
overhead parameter (shown in middle-left of figure 7.11). We classify communication
overhead into two categories: communications within teams (intrateam communica-
tion overhead) and communications across teams (interteam communication overhead).
Communications within a team usually are frequent and informal. Communications
across teams usually are more formal and via meetings and/or documented agree-
ments. A well-partitioned project usually has a higher level of communication traffic
within a team than across teams.

Both the intrateam communication overhead and the interteam communication over-
head parameters are modeled as a graph function, as shown in figure 7.12. The
intrateam communication overhead is a function of average team size, while the inter-
team communication overhead is modeled as a function of the number of teams. The
general shapes of the two graph functions are based on the assumption that commu-

nication overhead depends on the number of communication links ([7], [22]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

Figure 7.11. Determining the overall communication overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Intrateam communication overhead

0.6
0.5
0.4
0.3
0.2
0.1

10

20

Team size

30

Q@

Interteam communication overhead

0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

V.

/

e

i

e

e

-~

1t 23 45 6 7 8 9 1010

Number of teams

(@)

(®)

Figure 7.12. Intrateam and interteam communication overheads; (a) Intrateam
communication overhead; (b) Interteam communication overhead.

7.4.2 Interteam Interactions

Breaking a large team into subteams reduces the communications flow, but the

risk of problems caused by isolated concurrent works grows. Some aspect of one

teamn’s work may impact work being done by another [42]. Teams involved in con-

current development of different subsystems (e.g., hardware components and soft-

ware components) must have a steady flow of information among the groups to

prevent potential integration problems [21]. As Aoyama notes [19]:

Multiple teams working on the related enhancements may disrupt the system'’s

integrity. In requirements specifications, for example, this can cause inconsis-

tent and/or incomplete specifications. In design and implementation, simulta-

neous updates to a single module may violate the modules’s consistency:.

We define an “interference” as an interteam problem that is caused by multiple

concurrent development teams and could have been avoided if the project was done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141
by one team. In requirements analysis phase, for example, interferences could mean

conflicting requirements, missing requirements, or duplicate requirements.
Although these problems also exist in a one-team Waterfall process, they have differ-
ent meanings here. When the workload is assigned to different teams, missing
requirements mean that no team takes charge of those requirements; duplicate
requirements means that at least two teams work on the same requirements; and
conflicting requirements mean that different teams have different interpretations of
the same requirements.

Interferences among requirements specifications are at a higher level than
those encountered during design and implementation. In requirements analysis
phase, interferences are intangible and created as specifications are elaborated. With-
out ongoing, informal communication, simultaneous work on different components
of a project will create chaos rather than progress and will consume more time than
the sequential approach [65].

Interteam interferences amplify along two dimensions: the “degree of concur-
rency” dimension and the “development life cycle” dimension. Obviously, if there is
only one team, there would be no interteam interferences. However, as the number
of development teams increases, interteam interferences will grow, and worse yet, in
non-linear manner. The relationship between the number of interteam interferences
generated and the number of teams is modeled as the across-team interference amplifi-
cation parameter; its general form, as depicted in figure 7.13 (a), is based on our dis-
cussions with Mikio Aoyama and three other Fujitsu project managers [20].

Interteam interferences also grow along the development life cycle dimension.
An upstream interference amplifies more downstream interferences when down-
stream activities work on the upstream interference. The newly generated design

interferences, in turn, will generate more coding interferences. The longer the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142
interference remains undetected, the more downstream interferences will be ampli-

fied. For example, an inconsistent requirements specification (i.e., a specification
interference) will amplify one or more design interferences. If a requirement is asso-
ciated with five design units, then one requirements interference will amplify five
design interferences.

Interference amplification within the development phase (including design
and coding) is modeled as the dev phase interference amplification parameter (defined
in the Interteam Interactions sector). The general shape of the dev phase interference
amplification parameter, as depicted in figure 7.13 (b), is based on the experience of
Fujitsu [20]. In the initial stage of the development phase, a design interference will,
on average, amplify two-and-a-half downstream interferences (i.e., detailed design
and coding interferences). As the development phase progresses to the end, all inter-
ferences are coding interferences, and therefore will not amplify more interferences

(the value of the dev phase interference amplification parameter approaches 0).

(2]
(4
(2]

/

/
s
/

n
v

(2]

N

N
n

AN
AN
AN
\

~

-

-
tn

[=]
n

aciossteaminterference amplificatior
devphase interference amplificatior
(4.}

-
o

2 3 4 5 6 7 8 g 10 11 12 [} 0.5 1 1.5
numberof concumrentteams fraction projectperceived completed
(a) ®)

Figure 7.13. Interteam interference amplification; (@) Across team interference
amplification; (b) Development phase interference amplification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

In our model, we assume that interteam interferences are detected via inter-
team QA and system integration activities. The impact of interteam communication
on interference detection is implicitly included in four parameters: frac regs int (num-
ber of interferences committed per requirements specification), frac dev int (number
of interferences committed per unit developed), dev phase interference amplification
(number of coding interferences amplified per design interference), and across team
interference amplification (multiplier to interference amplification due to an increase of
concurrent teams). Effective interteam communication will have smaller values for
the four parameters. The effort spent in interteam QA activities is modeled as the
daily MP on int detection parameter (i.e., the amount of daily manpower allocated to
interference detection).

Detection of interteam interferences results in respecifying, redesigning, recod-
ing, and retesting. In the Fujitsu's concurrent development project [14], interteam
technical reviews (specification/design review and code inspection) are conducted
at the end of each life cycle phase. Interteam technical reviews are one-day work-
shops that involve team leaders reviewing completed work to locate interteam inter-

ferences.

7.4.3 Experimentation Setting

We select three representative patterns of interteam-to-intrateam communica-
tion ratio to cover different situations, from the “light interteam communication” sit-
uation (M1) and the “medium interteam communication” situation (M2) to the “high
interteam communication” situation (M3). For example, as shown in figure 7.14, if a
project is partitioned into eight subsystems concurrently being developed by eight

subteams, M1 represents the situation in which the average interteam

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
communication overhead is about 25% (CR = 0.25) of the intrateam communication

overhead; M2 represents the situation in which the project has a balanced interteam
and intrateam communication overhead (i.e., CR = 1); M3 represents the situation in
which the across-team communication traffic is about twice heavier than the

intrateam communication traffic (i.e., CR = 2).

oMt gz AM

22

>

18
16 a

1.4
1.2

0

0.8 A
0.6 (|
0.4

0.2
YAl

o—

0

Interteam-to-intrateam
communication ratio (CR)

1—
(I

Q
O

o) |®)
5 6 7 8 9

o OOp

> 00 b

Number of teams

Figure 7.14. Interteam-to-intrateam communication ratio.

The resolution of interteam problems (i.e., interteam interferences) results in
respecifying, redesigning, recoding, and retesting the work that has been done. The
amount of extra rework incurred by concurrent development definitely has an
impact on project cost and development cycle time. As with the communication
ratio, we select three representative patterns-F1, F2, and F3-to model different

degrees of extra rework (represented as a percentage of the original planned work),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145
from modest degree (F1) and medium degree (F2) of rework to high degree of

rework (F3). For example, as shown in figure 7.15, if a project is divided into eight
subsystems concurrently being developed by eight subteams, F1 represents the situ-
ation of 25% rework; F2 represents the situation of 50% rework; and F3 represents

the situation in which rework incurred by concurrent development is 75%.

oF1 of2 AFS
80
A
70
Qo
'U —~
L 50 -
&5 & -
g8 4 a o
56 - -
Ng 0 &5 o
[Z I O
SE 20 o O
2) O
09_ 10 O
)
2 3 4 5 6 7 8 9

Number of teams

Figure7.15. Projectsize change due to resolution of
interteam interferences.

To perform a systematic and comprehensive assessment of the SCS (synchro-
nous concurrent subsystems) development approach under different project scenar-
ios, we conduct nine sets of simulation runs using the nine “FxM"” combinations for
each number of concurrent teams, from one to eight. The meanings of the nine FxM

combinations are explained as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146
(1) M1xF1: Low communication ratio combined with modest degree of rework

caused by interteam interferences. This is the best-case scenario for an SCS
project. Possible reasons that an SCS project exhibits this type of behavior are
the project is well-partitioned or subsystems are loosely related. Under these
conditions, the need for interteam communication is minimal.

(2) M1xF2: Low communication ratio combined with medium degree of rework
due to interteam interferences. Projects may not be perfectly partitioned, and
teams do not communicate enough to resolve and prevent interteam problems.

(3) M1xF3: Low communication ratio combined with high degree of rework due to
intertearmn interferences. Projects are not well-partitioned, subsystems are
tightly-coupled. Teams do not communicate enough to coordinate their work.
Therefore, the incurred rework is high.

(4) M2xF1: Medium communication ratio combined with modest degree of rework
due to interteam interferences. Projects may not be perfectly partitioned, how-
ever, teams maintain a certain level of communication to coordinate their work
and prevent future interteam problems from occurring. Therefore, the incurred
rework is minimal.

(5) M2xF2: Medium communication ratio combined with medium degree of
rework due to interteam interferences. Projects may not be perfectly parti-
tioned. Teams do communicate to coordinate their work. However, a certain
level of rework to resolve interteam problems is still needed.

(6) M2xF3: Medium communication ratio combined with high degree of rework
due to interteam interferences. Projects are not well-partitioned, and sub-
systems are tightly coupled. Teams do communicate to coordinate their work.
However, the communication might not be effective. Therefore, the incurred

rework is still high.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147
(7) M3xF1: High communication ratio combined with modest degree of rework

due to interteam interferences. Projects may not be perfectly partitioned, how-
ever, teams maintain a high level of communication to coordinate their work
and prevent future interteam problems from occurring. Therefore, the incurred
rework is minimal. Microsoft’s Daily Build practice is an example of this type
of SCS development.

(8) M3xF2: High communication ratio combined with medium degree of rework
due to interteam interferences. Projects may not be perfectly partitioned. Teams
do frequently communicate to coordinate their work. However, the communi-
cation may not be effective, and a certain level of rework to resolve interteam
problem:s is still needed.

(9) M3xF3: High communication ratio combined with high degree of rework due
to interteam interferences. This is the worst-case scenario for the SCS develop-
ment approach. The project is not well-partitioned, and subsystems are tightly
coupled, requiring intensive communication and information traffic across

subsystem teams.

7.4.4 Simulation Results

Figures 7.16 and 7.17 depict the simulation data of the BASELINE project
under twenty-four different project settings. All twenty-four simulation runs simu-
late projects with M1 (i.e., low interteam-to-intrateam communication ratio) behav-
ior. Three immediate observations can be derived from the two figures.

First, for a given project setting, there exists an optimal number of concurrent
teams that leads to lowest project effort and shortest development cycle time. Our
results show that, for a 128 KLOC project (without requirements change) with aver-

age full-time-equivalent software personnel of 24.2 (data derived from COCOMO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148
2.0), the optimal number of concurrent teams is four for the M1xF1 combination and

three for the M1xF2 and the M1xF3 combinations. The optimal team size for the
Mi1xF1, M1xF2, and M1xF3 combination is six (24.2/4), eight (24.2/3), and eight
(24.2/3), respectively.

Second, it is beneficial to organize a project work force into smaller groups. The
savings in project effort and development cycle time is most significant from one-
team setting to two-team settings. For example, the savings in project effort and
development cycle time from one-team setting to the two-team M1xF1 setting is
16.4% (i.e., (13,329-11,143)/13,329) and 13.4% (i.e., (634-549)/634), respectively. How-
ever, the difference between the two-team M1xF1 setting and the four-team M1xF1
(i.e., optimal) setting is not significant. The difference for project effort and develop-
ment cycle time is only 3.1% (i.e., (11,143-10,793)/11,143) and 2.4% (i.e., (549-536)/
549), respectively.

The second observation can be theoretically justified. For a team with 24 mem-
bers, the number of potential communication links among team members is 276 (i.e.,
24x23/2). The number of potential communication links for two equal-sized teams is
132 (i.e., 2 x 12x11/2) plus one interteam communication link. The savings is 143 (i.e.,
276-133). When the 24 staff members are grouped into three teams, the number of
potential communication link drops to 84 plus three interteam communication links.
Now the savings in communication links is only 46 (133-87), which is 32% (i.e., 46/
143) of the two-team setting.

Third, it is beneficial to adopt the SCS development approach as long as the
incurred extra rework is below a certain threshold value. For example, as depicted in
figures 7.16 and 7.17, twenty-two out of twenty-four project settings have benefited

from the SCS development approach. The two exceptions are the seven-team M1xF3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149
and eight-team M1xF3 settings. These two project settings have a 58.5% and 75.3%

rework.

The threshold value for the incurred extra rework under the eight-team M1xF3
setting, suggested by CSE-SD, is around 57%. In other words, for an eight-team
M1xF3 SCS project setting to be beneficial, the incurred extra rework due to inter-
team interferences should not exceed 57%.

The results for the “medium interteam communication” (M2) situation and the
“high interteam communication” (M3) situation are depicted in figures 7.18 to 7.21.
Like the three M1 settings, there exists an optimal number of concurrent subteams
that leads to the lowest project effort and the shortest development cycle time for the
M2 and M3 settings. The simulation results show that, for the BASELINE project
(without requirements change) with average full-time-equivalent software person-
nel of 24.2, the optimal number of concurrent subteams is three for the M2xF1, the
M2xF2, and the M2xF3 settings. The optimal team size for these three settings is
eight (24.2/3). The M3 situation exhibits similar behavior. The optimal number of
concurrent subteams is three for the M3xF1, M3xF2, and M2xF3 combinations. The
optimal team size for all the three M3 combinations is eight (24.2/3).

The savings in project development cycle time for organizing project staff into
optimal project setting is 15.0% (i.e., (634-539)/634) for the M2 situation and 14.5%
(i.e., (634-542)/634) for the M3 situation. The savings in project effort is more signifi-
cant than those of development cycle time. The savings is 18.4% (i.e., (13,329-
10,876)/13,329) for the M2 situation and 17.7% (i.e., (13,329-10,966)/13,329) for the
MS situation.

Third, it is beneficial to adopt the SCS concurrent development approach as
long as the incurred extra rework is below a certain threshold value. In the M2

(medium intertearn communication) situation, it is unwise to attempt a seven-team

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150
concurrent development if the incurred rework is above 57%. As shown in figures

7.18 and 7.19, both the development cycle time (637 working days) and project effort
(13,889 person-days) of the seven-team setting is similar to that of the one-team set-
ting (634 working days and 13,329 person-days, respectively). In the M3 (high inter-
team-to-intrateam communication ratio) situation, our results suggest not
organizing project staff into more than six subteams if the incurred rework is above
47%.

In summary, the SCS concurrent development approach is feasible and benefi-
cial. It helps cut project effort and development cycle time. Under sound project con-
ditions (low interteam-to-intrateamn communication ratio and low incurred extra
rework, i.e., the M1xF1 setting), the SCS development approach cuts project effort by
19% and development cycle time by 15.5%. However, there are limits to the benefits
of the SCS development approach. The benefits of the SCS development approach
are confined by the relative magnitude of the interteam-to-intrateam communication

ratio and the degree of extra rework incurred due to interteam problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

o M1 xF1 MMl xF2 AM1 xF3
700 B85
675 4
Y
S 650634 637
<
X m 634 A
o
2 625&4 603 612
S 589 =
S 600 |— 583 7 A
© A 572 A m 588
g 575 .-574—
et mo68 A & 565
o m 556 = 558 o)
525 537 536 538
500 r v T - T T
1 2 3 4 5 6 7 8 9
Number of teams
Figure 7.16. Project duration vs. number of teams
(low communication ratio M1).
oMixF1 mM1 xF2 AMt xF3
15000
14425
A
% 14000
© 13329 13365
5 a0 R
e 130001322 . -
jz; 12095 12234 A 12774
11928
e
S n [| 11836
o 1iess = a 11607 o
S 11000 O e 1B o o5 -t
a O o O 10989 11129
10817 10793 10857
10000 - -
1 2 3 4 5 6 7 8

Number of teams

Figure 7.17. Project effort vs. number of teams
(low communication ratio M1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(@)
8

oM2xF1 aM2x F2 aAaM2xF3
725 -
700 A
[
> 675 -
o
g’ 650 A -
8 L |
g 6258 e
c 5 L]
S 600 S S
© P 8% A
3
o
k4
o
Q.

550 o L . o o
- o o O s -
525 o™ P ko
500
1 2 3 4 5 6 7 8
Number of teams
Figure 7.18. Project duration vs. number of teams
(medium communication ratio M2).
oM2xF1 mM2xF2 AM2xF3
16000
14948
1
— 15000 —
)
£ 14000 s
§ 13429 A 13407
g 12998 [| :
= 1300G 3329 5357 —Ah—12538 ‘
S 12147
12040 12062 @&
o000 | 1At 11882 1185 g
3] 1426 1!
8 m . " o
] c ® o O 11695
a. 11000 O 11372
11197 O O 11153
10876 10883 11003
10000

1 2 3 4 5 6 7 8 9 10

Reproduced with permission of the copyright

Number of teams

Figure 7.19. Project effort vs. number of teams
(medium communication ratio M2).

owner. Further reproduction prohibited without permission.

11

152

153

OM3IxF1 | M3 xF2 AM3xF3
800
s 743
. 750 A
8 725
£ 700 G2
5 A
g 675 643 W50
(=} r'y
B 625 @634 612 - 630
=3
S 600 8 515 57— 386 — .59 5
g 575 w571 A .‘m—_l‘ 260 O 530
T e o Wsst N o e
. O O o
525 27 S8
500 .
1 2 3 4 5 6 7 8 9
Number of teams
Figure 7.20. Project duration vs. number of teams
(high communication ratio M3).
OM3xF1 mM3xF2 AM3xF3
17000
16000 15701
A
§ 15000 13338
=
S B 14173
2 14 +3556
& 0()013 29 3:
5 @ 13329 12824 = 13257
2 130003329 =
g 12177 12184 & 12436
;é: 12000 A ol L) -12077 o
sum © - 11709 (O bt
- 11516 Q 11872
o o
11000 o o — 11520
11204 10966 11036 11218
10000 , . : r . ; . . -
1 2 3 4 5 6 7 8 9 10 11
Number of eams

Reproduced with permission of the copyright

Figure 7.21. Project effort vs. number of teams
(high communication ratio M3).

owner. Further reproduction prohibited without permission.

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

8.1 Contributions of the Research

This research has made three major contributions. First, we have presented a
classification of different types of concurrent software engineering (CSE) practices,
based on a proposed conceptual Resource-Activity-Work product (RAW) model. The
RAW model is able to capture different types of concurrency in different levels of
detail. We also have surveyed state-of-the-practice CSE practices and presented them
using the RAW model. The RAW representation allows one to easily recognize differ-
ent types of concurrency that exist in a complex software development process, and,
therefore, predict the benefits and potential risks of the development process.

Second, we have identified the specific benefits, potential risks, and the
dynamic cause-effect implications of different types of CSE practices. Based on the
cause-effect analysis, we have developed a system dynamics simulation model CSE-
SD to assess the impact of concurrent software engineering on project cost and devel-
opment cycle time.

CSE-SD is an economic and effective management policy exploration tool for
pre-assessing the benefits and potential risks of reengineering software development
processes. It is useful for process definition, process analysis and process redesign.
The output of the CSE-SD model provides a predictive reference behavior for the
newly reengineered process. The proposed CSE-SD simulation model easily can be

extended to assess the impact of other factors.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155
Third, we have studied three sets of questions using the CSE-SD model: (1) the

impact of project restaffing on project cost and development cycle time; (2) the
impact of the phase overlapping concurrent development approach on project cost and
development cycle time; and (3) the impact of the synchronous concurrent subsystems
development approach on project cost and development cycle time. The results of
our study provide strategic information for software project managers who attempt
concurrent software product development. The results of our study are summarized
in section 8.2.

The utility of the CSE-SD model for a particular organization depends on cali-
brating it according to local data. While model parameters in CSE-SD are set with
reasonable numbers to investigate the impact of CSE practice in general, the results

using the defaults will not necessarily reflect all environments.

8.2 Important Findings
Three specific sets of questions have been studied in this thesis: (1) What is the

impact of adding people late in a software project? Will the project be completed ear-
lier or be delayed even further as predicted by Brooks’ Law? When is the best time to
add people to a software project, and how many people should be added? (2) What
is the impact of the phase overlapping concurrent development approach on project
cost and development cycle time? Will phase overlapping reduce project duration
and/or cost? What is the optimal degree of phase overlapping in terms of project
cost and development cycle time? and (3) What is the impact of the synchronous con-
current subsystems (SCS) development approach on project cost and development
cycle time? Will the SCS development approach reduce project cost and develop-

ment cycle time? For a given project, what is the optimal number of subsystems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156
(subteams) that can lead to the shortest development cycle time and lowest cost?

What is the impact of interteam technical review on project duration and cost?

8.2.1 Brooks’ Law

We performed an in-depth study of Brooks” Law using the CSE-SD model. The
results of the study are based on three sets of simulation runs with different assump-
tions. First, we use the same assumptions as those of Abdel-Hamid and Madnick
(AHM) [7]: (1) project tasks can be partitioned, but there is no sequential constraint
among them; and (2) management continuously will add new people as long as it
senses a shortage in manpower. Under these assumptions, our results are consistent
with those of AHM, namely, adding more people to a late project always causes it to
become more costly but does not always cause it to be completed later.

Next, we use a more realistic assumption by considering sequential constraint.
We found out that continuously adding people to a late project makes it later and
more costly. This confirms Brooks” Law. However, these results are different from
those of AHM’s. Their results indicated that adding people late in the project (until
two calendar weeks remaining to complete the project) will not delay the project.
Our results show that, when sequential constraint is significant, adopting such an
aggressive manpower acquisition policy causes the project to be delayed further.

Finally, we add another realistic assumption that people are added to a project
only once throughout the entire project life cycle, because it is difficult to obtain fre-
quent manpower addition approvals from upper management. We found out that
there is an optimal time range for adding people without delaying a project. It
ranges from one-third to halfway into the project development. If software project
managers cannot make a timely and accurate decision on project restaffing prior to

halfway into the project, the project has a high probability of being delayed,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157
especially when task sequential constraints are involved. However, adding people

during the project always causes the project cost to increase.

8.2.2 Impact of Phase Overlapping

Our results show that when 90% of the requirements changes occur during the
requirements analysis phase, the phase overlapping concurrent development
approach reduces both project effort and development cycle time. In other words, if
the requirements phase is done well and the requirements specification is fairly com-
plete and stable, then CSE is very helpful. However, when most of the requirements
changes occur during the “product design” phase or later, the improvement by CSE
in reducing cycle time is not significant. Furthermore, software project managers
have to pay the price of increased project effort when attempting the phase overlap-
ping development approach. |

Among the nine combinations of “requirements change patterns” and “phase
overlapping modes” we examined, the “CIxR3xD2” combination has the shortest
project development cycle time and lowest project cost. The “C1xR3xD2” combina-
tion represents the situation of attempting aggressive phase overlapping when most

of the requirements changes occur during the “requirements analysis” phase.

8.2.3 Impact of Synchronous Concurrent
Subsystems

Three important findings are observed from our simulation data. First, for a
given project setting, there exists an optimal number of concurrent teams that leads
to lowest project effort and shortest development cycle time. For the specific project
we studied (i.e., 128 KLOC COCOMO 2.0 nominal project), the optimal number of
teams is three if the project is well-partitioned and the amount of rework due to

interteam problems is around 30% to 40%. The optimal team size is eight, which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158
consistent with that suggested by Graicunias [45]. According to Graicunias, the

upper limit of effective staff size is about eight [75].

Second, it is beneficial to organize a project work force into smaller groups. The
savings in project effort and development cycle time is most significant from a one-
team setting to a two-team setting. For example, the savings in project effort and
development cycle time from a one-team setting to the two-team M1xF1 setting (i.e.,
the combination of low interteam-to-intrateam communication ratio and low rework
percentage) is 16.4% and 13.4%, respectively. However, the difference between the
two-team M1xF1 setting and the four-team M1xF1 (i.e., optimal number of teams)
setting is not significant. The difference for project effort and development cycle time
is only 3.1% and 2.4%, respectively.

Third, it is beneficial to adopt the SCS concurrent development approach as
long as the incurred extra rework is below a certain threshold value. For example, in
the M2 (medium interteam-to-intrateam communication ratio) situation, it is unwise
to attempt seven-team concurrent development if the incurred rework is above 57%.
In the M3 (high interteam-to-intrateam communication ratio) situation, our results
suggest not organizing project staff into more than six concurrent teams if the

incurred rework is above 47%.

8.3 Future Work

The proposed CSE-SD model is designed to study the impact of CSE on project
cost and development cycle time. It is a comprehensive model that covers the entire
software development process, from requirements analysis to system integration
and test. However, the proposed model still can be extended to assess the impact of

other factors of interest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159
As discussed in section 4.2.3, in the asynchronous concurrent subsystems

(ACS) concurrency, each subteam evolves its design at a different speed, but their
work must be integrated at the end of the project. Therefore, knowing how to control
the development progress of each subteam, to be sure they complete their share of
work on time, becomes an important issue. Timebox-based project management
helps prevent delay of the project by ensuring that no subsystem is late [54]. The pro-
posed CSE-SD model can be extended to assess the impact of instituting timebox
management practice when concurrent developments are out of sync.

In section 4.2.4, we identified critical factors in the CFI concurrency, namely,
cross-functional integration, empowerment of decision-making authority, co-loca-
tion of teamn members, dedicated team members, and setting time as a goal. CSE-SD
can be extended to incorporate theses factors and test the following hypotheses:

1. Increasing the number of functions represented on the development team
decreases development time. Cycle time benefits, however, may diminish, if a
cross-function team becomes too large.

2. (a) Decreasing the number of decisions for which approval is required outside the
project team decreases development time; (b) Increasing the level of senior man-
agement support for the team decreases development time.

3. Setting and measuring fast cycle time as an explicit project goal decreases devel-
opment time.

4. Co-locating team members decreases development time.

5. As the number of projects to which team members are assigned decreases, devel-

opment time decreases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A
CSE-SD MODEL SPECIFICATION

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161
A.1 The Human Resource Subsystem

The Human Resource subsystem consists of three sectors: Work Force, Staff Pro-
ductive Time, and Staff Productivity. They are responsible for modeling the project
work force, the amount of time that project staff members actually spend on the

project, and their production rate, respectively.

A.1.1 The Work Force Sector

The Work Force sector, as shown in figure A.1, keeps track of the current num-
ber of project staff members that are working on the project (current WF). We divides
the available work force into two categories, new staff members (New Staff) and
experienced staff members (Exp Staff), mainly for three reasons. First, new staff
members usually are less productive because of their lack of project experience and
knowledge. Second, new staff members usually spend part of their time in training
and orientation right after they are brought into the project. Training also consumes
part of the experienced staff members’ productive time. The third reason is that new
staff members are prone to commit more errors than the experienced staff members.

Management decides on the number of engineers to hire (desired new staff)
and/or the number of staff members to bring from other projects (Desired In Trans
Staff). The hiring and transferring of project staff members take time. The time that it
takes to hire new staff members and transfer staff members into and out of the
project from within the organization, is modeled as hiring delay, in trans delay, and out
trans delay, respectively.

Once the desired number of new work force members is brought into the
project, they usually will go through a training/assimilation period before they
become experienced and productive. The training/assimilation period is modeled as

assimilation delay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

Mx new hwees per exp staff

FTE exp staff vefage o2iy MP per staff

‘~I

Figure A.1. The Work Force sector.

A.1.2 The Staff Productive Time Sector

The Staff Productive Time sector, as shown in figure A.2, monitors the staff time
resource. It breaks down project staff members’ daily time into two main categories:
project time (Project Time) and slack time (Slack Time). Project time is the time that
staff members spend on project-related activities. It is further classified into three
different categories: productive time (average productive time), training time (training

time), and communication time (overall communication overhead).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163
Productive time includes the time that staff members spend on development

activities such as requirements specification, design, coding, testing, QA, and
rework. The training time parameter keeps track of the time that project staff mem-
bers spend in training. This includes both the time spent by experienced staff mem-
bers and new staff members in training-related activities.

Communication time (overall communication overhead) captures the amount of
time that staff members spend on communicating with other members of the project.
As illustrated in figure A.3, we distinguish between communication within a team
(intrateam comm overhead) and across teams (inferteam comm overhead). Communica-
tion within a team usually is frequent and informal. Communication between teams
usually is more formal and via meetings and/or documented agreements. A well-
partitioned project usually has higher levels of communication traffic within a team
than across teams.

Slack time (Slack Time) is the time that project staff members spend in non-
project events, such as coffee breaks, personal business, and sickness. When a project
is perceived to be behind schedule, people tend to work harder to bring it back on
schedule. They do that by compressing their slack time and/or working overtime
(Overtime) [7].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

Exp Staff

rainer's ime per new staff

project average daily productive time
= New Staff

new stalf traineng ame training tme
Cum Daily Prod, Time

overtime efficiency eflective overtime @
prof O v
averall DPT change rate
,
Ovedime s Time
Q overtime m o decr rate G j Q)

current WF

Figure A.2. The Staff Productive Time sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

average intrateam comm overhead

Cum Team Size

v

project average feam size

cation overhead

overhead

Mtrateam comm ratio

interteam comm cum rate average interteam comm overhead

Figure A.3. Compute overall communication overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166
A.1.3 The Staff Productivity Sector

The Staff Productivity sector, as illustrated in figure A.4, determines the aver-
age staff production rate, i.e., number of tasks performed per unit of time. Our focus
is on project factors that likely will change over the life cycle of a software project.

In CSE-SD, staffs members’ actual production rate (actual staff prod rate) is
driven by four factors: nominal staff production rate (nominal staff prod rate), work
force mix ratio (frac WF exp), schedule pressure (schedule pressure), and staff mem-
bers’ average exhaustion level (Exhaustion Level). The nominal staff production rate
is defined as the average production rate of the experienced staff members working
under the condition that there is no schedule pressure on them and they are not
exhausted (i.e., Exhaustion Level = 0).

Exhaustion is a condition that typically results when a person works long
hours across many days and takes an insufficient amount of time away from the
workplace for rest and relaxation. Exhaustion can cause a person to make more mis-
takes, be less productive, and frequently be irritable toward coworkers [82].

In our model, exhaustion level is assumed to build up because of reduced
slack time and working overtime due to schedule pressure. As the staff members
continue to work overtime and/or with reduced slack time, their exhaustion level
will increase. However, as their exhaustion level increases, the time span they are
willing to work overtime and/or reduced slack time (overwork duration) decreases.
At the time the exhaustion level reaches the maximum threshold exhaustion level,
they are not willing to continue to overwork (i.e., overwork duration = 0). It will take a
certain period of time without overwork (exh diminish time) for them to diminish the

accumulated exhaustion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

Max Exh Cheek Point

Overtime @ md '@
'max ECP inc rate ’ ECP Yec rate
overwork willingness
overwork ch
Stack Time
Ik
Exhaustion Level
exh buildu; di A exh diminish time

inc rate M

- on prod rate

current WF
- “ N
'
effecton o O !
frac staff exp
. overwork\duration
normnal staff prod rate SP effect on prod rate max MP shortagg to be handled
a8
actual stff prod rate
frac project pevd completed S max overwork duration
LOC per dev unit -~ oy
r N
N
schedule pressure max overwork time

leaming effect on prod rate

Figure A.4. The Staff Productivity sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168
A.2 The Work Flow Subsystem

The Work Flow subsystem models the software production activities, ranging
from requirements specification to system integration and test. It consists of three
sectors in which each sector models the software production process of the three
phases modeled in CSE-SD, namely requirements, development, and system inte-

gration and test.

A.2.1 The Requirements Work Flow Sector

The Requirements Work Flow sector, as illustrated in figure A.5, models the
requirements phase. Three requirements phase activities are modeled in the sector:
requirements collection, requirements specification, and specification QA. The sta-
tuses of these three activities are modeled as three stock parameters: Raw Regs, Regs
Spec, and QAed Reqs Spec, respectively. |

The Raw Regs parameter keeps track of the amount of raw requirements at any
stage of the requirements phase. Despite whatever time and attention users and
developers give to requirements in the beginning, they often become aware, as work
proceeds, of additional features to add to the initial set of requirements [64]. The rate
at which the additional requirements are incorporated into the project is modeled as
the regs change rate parameter (defined in the Project Scope Change sector).

Two sources contribute to the decrease of the Raw Reqs parameter. First,
requirements are analyzed, and specification activity moves Raw Regs into Regs Spec.
The speed at which Raw Regs flows into Regs Spec is modeled as spec rate, which, in
turn, is determined by the amount of daily manpower allocated to requirements
specification (daily MP to spec) and average staff requirements specification produc-

tivity (spec prod rate).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169
The second source that contributes to the decrease of raw requirements is

requirements change. Requirements change may cause some of the Raw Regs be
deleted. The pattern of daily amount of requirements deletion due to requirements
change is modeled as the raw regs deletion parameter.

The Regs Spec parameter keeps track of the amount of current, not-yet-QAed
requirements specifications. It increases, at the rate of spec rate, due to the require-
ments specification activity. Regs Spec will decrease for three reasons. First, require-
ments specification QA activity moves Regs Spec into QAed Regs Spec. The speed at
which the requirements specification flows into the QAed Regs Spec stock parameter
is modeled as spec QA rate. We assume that the requirements specification QA activ-
ity follows the Parkinson's Law [22], that is, “work expands to fill the available vol-
ume.” The requirements specification QA activity will expand to use up all of the
time assigned (average QA delay). Therefore, spec QA rate is modeled as Regs Spec
divided by average QA delay. The other reason that causes the requirements specifica-
tion to decrease is deleted requirements specification due to requirements changes
due to the discovery of unplanned requirements and the resolution of interteam
interferences.

The QAed Reqs Spec parameter captures the amount of current QAed require-
ments specification. It increases, at the speed of spec QA rate, due to the requirements
specification QA activity. Two sources cause QAed Regs Spec to decrease: QAed
requirements specification deleted due to requirements changes and QAed require-

ments specification that flow into the development phase (QAed spec to dev rate).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

QAed Reqs Spec To Dev Phase

Figure A.5. The Requirements Work Flow sector.

A.2.2 The Development Work Flow Sector

As shown in figure A.6, the Development Work Flow sector models the develop-
ment activities, including software development and QA. The QAed requirements
specification coming from the Requirements Work Flow sector becomes the work to be
performed in the development phase. The amount of work to be performed (Units
To Be Developed) accumulates at the speed of units TBD incoming rate, which is
defined as the sum of two parameters: QAed spec to dev rate and dev units inc due to int

(development units increases due to interteam interferences).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171
Development phase activities are classified into two general types: develop-

ment and QA. The speed at which software units are developed is modeled as the
dev rate parameter, which is determined by the daily manpower allocated to devel-
opment (daily MP to dev), average staff development productivity (dev prod rate), and
degree of concurrency. Degree of concurrency is defined as the fraction of the num-
ber of software units that are ready to be worked on and the number of software
units project staff members are able to perform. For example, degree of concurrency
= 0.8 means that only 80% of the software units that project staff members are able to
perform are ready for assignment.

The dev QA rate parameter models the number of developed units that are
QAed per day. As with the requirements specification QA activity, we assume that
the development QA follows Parkinson's Law. That is, no matter how many devel-
opment units need to be QAed within a predetermined QA duration (dev QA dura-
tion), they always get QAed. The results of the development and development QA
activities are modeled as the Units Developed parameter and the Units QAed parame-

ter, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

Deleted Dev Units Deleted Deved Units

Deleted QAed Deved Units

dev units del due to int

dev unitsjcum rate

QAed specto dev rate
dev uits deletion

QAed units del due to int

Units To Be Deveicped
pcoming rate

dev QA duration

Cum Units QAed

LOC per regs l l

pevd total dev unils

QAed Units Deved To Test

Figure A.6. The Development Work Flow sector.

A.2.3 The System Integration and Test Sector

As illustrated in figure A.7, the System Integration and Test sector models the

system integration and test activities. Software units concurrently developed by dif-

ferent people and/or teams must be collected (Units to be Integrated)

and integrated

into a single system (Units Integrated). The integration process is a major process that

serves to synchronize the multiple concurrent processes [16]. Once software units are

collected, they are integrated, and then tested. The rate at which units are integrated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173
and tested depends on the amount of manpower allocated to system integration

(daily MP to integration), system test (daily MP to test), and the average manpower to
integrate and test a software unit (testing effort per unit).

The defects that flow into the System Integration and Test phase from the
Development phase are captured in the PreTest Defects stock parameter. Defects are
detected as the testing activity progresses. The rate at which defects are detected
depends on three factors: testing rate (festing rate), average number of defects
detected per unit tested (num of defects detected per unit), and test effectiveness (test
effectiveness). Test effectiveness is defined as the fraction of defects that are detected
via testing. For example, if a software unit has 10 defects, a test effectiveness of 0.8
means 8 defects will be detected when the software unit is tested. Test effectiveness
is a function of daily manpower that is allocated to testing (daily MP to test).

Defects found in test must be corrected. The rate at which defects are cor-
rected relies on how much manpower is allocated to correcting defects found in test
(FIT) (daily MP to defects FIT correction) and, on average, how much effort is needed
to correct a defect found in the system test (effort to correct a defect FIT). Defects unde-

tected will released to the customer (Defects Released).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Figure A.7. The System Integration and Test sector.

A.3 The Defects and Rework Subsystem

The Defects and Rework subsystem models the generation, detection, and
rework of detected defects. It consists of two sectors: Requirements Defects and
Rework, and Development Defects and Rework. Three categories of defects are of con-
cern: requirements defects, development defects, and bad fixes, according to the dif-
ferent types of activities modeled in CSE-SD. One important reason to classify

defects into these three categories is that different types of defects require different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175
costs to fix. Defects originated in upstream phases, such as requirements, will flow

into downstream phases if not detected. Designs based on defective requirements

specifications are defective, no matter how perfect the design is.

A.3.3 The Requirements Defects and Rework Sector

The Requirements Defects and Rework sector, as illustrated in figure A.8, models
the generation, detection, and correction of requirements specification defects.
Requirements specifications will result in an unavoidable generation of defects.
Specification defects are generated at the rate of spec defects generation rate, which, in
turn, is determined by two parameters: the total number of requirements specified
daily (spec rate, defined in the Requirements Work Flow sector) and the average num-
ber of defects generated per KLOC (regs defects per KLOC).

Some of the specification defects are detected (Detected Spec Defects) when the
specification is reviewed, and some escape detection (Escaped Spec Defects). Detected
specification defects are then reworked (Spec Defects Fixed). Bad fixes to the correc-
tion of the detected specification defects (Spec Defects Bad Fixes) are also captured in
the model. Defects that are undetected during the requirements phase and bad fixes
to the detected specification defects will flow into the Development phase.

We also keep track of the density of defective requirements specification, both
before (pre QA spec defect density) and after the QA activity (post QA spec defect den-
sity). Post-QA specification defect density is defined as the total number of residual
specification defects (the sum of the escaped specification defects and bad fixes)
divided by the cumulative number of QAed requirements specifications (Cum QAed

Reqgs Spec).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Regs Spec
daily MP to spec QA -~
d "\ ’W,
pe QA di Q ,’ I~
q spec defect gensity MP needed tofix a spec defect
regs defects per KLOC . "\I
~Qa
() daly MP 10 spec deect correction
ne DA eqliveness
Spec Defgc Detected Spec Defects Spec Defects Fixed
o .]]
spec deft g tion rate SPec gefects delection rate spec defect ing rate
spec defect kscape raté
I’ P > -
N e @
specrate '_I spec QA rate spec defects bad
LOC per regs
Spec Defects Bad Fixes
Escaped Spec Defects
. spec defects bad fixes rate
past QA spec defect density
Cum QAed Regs Spec

Figure A.8. The Requirements Defects and Rework sector.

A.3.4 The Development Defects and Rework Sector

The Development Defects and Rework sector, as shown in figure A.9, models the
generation, detection, and correction of development defects, including design and
coding defects. Development will result in an unavoidable generation of defects.
Development defects are generated at the rate of dev def gen rate, which, in turn, is
controlled by three parameters: (1) the number of software units developed per day

(dev rate, as defined in the Development Work Flow sector); (2) the average number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177
development defects committed per KLOC (dev defects committed per KLOC); and (3)

the post-QA specification defect density (post QA spec defect density).

Some of the development defects are detected (Detected Dev Defects) when the
developed software units are QAed, and some escape detection (Cum Dev Defects
Escaped). Detected development defects are then fixed (Cum Dev Defects Fixed). Bad
fixes to the fixing of development defects are also captured in the model (Cum Dev
Defects Bad Fixes). Development defects that are undetected during the development
phase and bad fixes to the development defects will flow into the System Integration
and Test phase. Development defects that escape detection and bad fixes to the
detected development defects will recycle back into the Undetected Active Dev Defects
stock parameter.

Development defects are classified into two categories: active and passive.
Active defects are defects that will amplify more defects. For example, design defects
usually are active, since they will amplify coding defects. However, when the devel-
opment phase progresses to the coding stage, some of the defects will not continue
to amplify more defects. These passive development defects are modeled as the Pas-
sive Dev Defects stock parameter.

We keep track of the density of development defects (dev defect density), which
is defined as the ratio of development defects, including both the active and passive

development defects, and the cumulative software units developed (Cum Units

Deved).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

nomena effort to detect a dev defect

d Cum Dev Defects Bad Fixes
def 5ad fixes rate
15 o .]

nom dev defeats KLOC

act dev def density eflec\on dev def gen

- dev dgf recycting rate
o9
post QA spec defect densty 9@
defects unis integration rate
LOC per reqs -‘
_7
oA
7
act dev def dx ate frac daily MP to SIT

Figure A.9. The Development Defects and Rework sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179
A.4 The Manpower Allocation Subsystem

The Manpower Allocation subsystem allocates planned effort to different soft-
ware engineering activities, including requirements specification, development, QA,
defect correction, and system integration and test. It consists of three sectors: Require-
ments Manpower Allocation, Development Manpower Allocation, and SIT Manpower Allo-

cation.

A.4.1 The Requirements Manpower Allocation Sector

The Requirements Manpower Allocation sector, as illustrated in figure A.10, allo-
cates the planned daily manpower to different activities in the Requirements phase,
including requirements specification (daily MP to spec), specification QA (daily MP to
spec QA), requirements specification defects correction (daily MP to spec defect correc-
tion), requirements change rework (daily MP to reqs change rework), and requirements
interference resolution (daily MP to int resolution).

Daily manpower allocated to specification defect correction is determined by
two parameters: manpower needed to fix a specification defect (MP needed to fix a
spec defect) and the desired specification defect correction rate (desired spec defect cor-
rection rate). The desired specification defect correction rate is determined by (1) con-
sidering the amount of detected specification defects that need to be dealt with
(Defects Spec Detected) and (2) the average delay a specification defect is fixed after it
is detected (spec defect correction delay).

The remaining requirements phase manpower after specification QA and spec-
ification defect correction is devoted to the requirements specification activity (daily

MP to spec).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

Actual Frac MP On QA S - - average daity MP per staff

_/
specand QA lete net 1otaé dady MP total daly MP daily MP tacior
Rec Defects ~ Rl
D Ut !
- daily MP to regs change rework average productive ime

MP needed to fix 3 spec defect

Figure A.10. The Requirements Manpower Allocation sector.

A.4.2 The Development Manpower Allocation Sector

As shown in figure A.11, the Development Manpower Allocation sector has a
structure similar to the Requirements Manpower Allocation sector. Its main function is
to allocate development phase manpower (daily MP to dev phase) to different devel-
opment activities, including development, QA, and development defect correction.

Daily manpower allocated to development defect correction (daily MP to dev
defect correction) is determined by two parameters: manpower needed to fix a devel-
opment defect (MP to fix a dev defect) and the desired development defect correction

rate (desired dev defect correction rate). The desired development defect correction rate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181
is determined by considering the amount of detected development defects that need

to be fixed (Detected Dev Defects) and the average delay until a development defect is
fixed after it is detected (dev defect correction delay).

The remaining development phase manpower resource after allocating to
development QA (daily MP to dev QA) and development defect correction is allo-
cated to the developmenf activity (daily MP to dev).

frac dailty MP 1o regs

Units To Be Develcped

Units Developed

Figure A.11. The Development Manpower Allocation sector.

A.4.3 The SIT Manpower Allocation Sector
The SIT Manpower Allocation sector, as illustrated in figure A.12, has a structure
similar to that of the Requirements Manpower Allocation sector and the Development

Manpower Allocation sector. Its function is to allocate the System Integration and Test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182
(SIT) phase manpower (daily MP to SIT phase) to different activities in the SIT phase,

including integration, system test, and defect correction.

Daily manpower allocated to fixing defects found in the SIT phase is deter-
mined by two parameters: manpower needed to fix a defect found in test (M P needed
to fix a defect FIT) and the desired defect correction rate (desired defect FIT correction
rate). The desired correction rate of the defects found in system test is determined by
considering the amount of system test-detected defects that need to be corrected
(Defects Found in SIT) and the average delay until a system test-detected defect is
fixed after it is detected (defects FIT correction delay).

The remaining system integration and test manpower resource after allocating
to system test and defect correction is allocated to the system integration activity

(daily MP to integration).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

N -

frac units integrated

Defects Found in SIT
frac units tested

pevd def FIT comection prod

s~

rate

MP needed to fix 3 defect FIT

defects FIT comection delay

Figure A.12. The SIT Manpower Allocation sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184
A.5 The Manpower Needed Subsystem

The Manpower Needed subsystem determines the amount of effort perceived
still needed to complete the project on time. The amount of effort perceived still
needed to complete the project includes the effort perceived still needed to complete
the activities in all three phases modeled in CSE-SD, namely Requirements, Devel-
opment, and System Integration and Test. The effort perceived still needed to com-
plete the Requirements, Development, and System Integration and Test phase is
determined by the Requirements Manpower Needed sector, the Development Manporwer

Needed sector, and the SIT Manpower Needed sector, respectively.

A.5.5 The Requirements Manpower Needed Sector

As shown in figure A.13, the Requirements Manpower Needed sector deter-
mines, at any stage of the requirements phase, the effort perceived still needed to
complete the requirements phase, including the effort needed for requirements spec-
ification, specification QA, and specification defect correction.

In the early stage of the requirements phase, engineers usually do not know
exactly how productive they are. Their perception of their productivity simply is
their planned productivity. However, when the project progresses, they begin to
realize how productive they are. Therefore, their perception of their productivity
approaches their actual productivity. Thus, the perception of the effort still needed to
complete the requirements phase approaches the effort that is actually needed.

The perception of the manpower still needed to complete the requirements
phase is modeled as a weighted average (weight fo actual reqs effort needed) of the
planned requirements phase effort remaining (regs phase effort remaining) and the
actual requirements phase effort needed. The actual effort still needed to complete

the requirements phase is the sum of the actual specification effort needed (actual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185
spec MP needed), the specification QA effort needed (spec QA needed), and the specifi-

cation defect correction effort needed (spec defect correction effort needed).

The actual effort still needed to complete the requirements specification activ-
ity is determined by dividing the total number of requirements that have been speci-
fied (Cum Spec) and the actual effort that was spent on the specification (Reqs Spec -
Effort). The effort that is actually needed to complete the specification activity is
determined by multiplying the number of requirements remaining to be specified
(reqs remaining to be specified) and the actual specification productivity (actual spec pro-
ductivity).

The effort needed for specification defect correction depends on the amount
of detected specification defects (Detected Spec Defects) and the manpower needed to
fix a specification defect (MP needed fo fix a spec defect). The actual effort still needed
for specification QA is modeled as a fraction (Actual Frac MP on QA) of the actual

specification effort perceived still needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

Pcvd Project Size

o\

'@

LOC per reqs MP neeged to fix a spec defect

spec geféct corectiomeffort needed

3 spec QA MP needed . I
n pcvd regs phade effort feeded Detected Spec Defects

Actual Frac MP On QA Q
,’ N ‘ ¢ weight to actual reds effort needed
N curreptptanned feqs phase effort .
init planned effort to reqs reqs phase effolt remaining

frac spec pgvd complated
1N o r M

| -
pevd total dev units

Cum Reqs Phase Effort

Figure A.13. The Requirements Manpower Needed sector.

A.5.6 The Development Manpower Needed Sector
As shown in figure A.14, the Development Manpower Needed sector determines,
at any stage of the development phase, the manpower needed to complete the devel-
opment phase, including manpower needed for software development, develop-
ment QA, and development defect correction.
The perception of the manpower still needed ‘to complete the development
phase is modeled as a weighted average (weight to actual dev effort needed) of the

planned development phase effort remaining (dev phase effort remaining) and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187
actual development phase effort needed. The actual effort still needed to complete

the development phase is the sum of the actual development effort needed (actual
dev effort needed), the development QA effort needed (dev QA MP needed), and the
development defect correction effort needed (dev defect correction effort needed).

The actual effort still needed to complete the development activity is deter-
mined by dividing the total number of software units that have been developed
(Cum Units Deved) by the actual effort that was spent on it (Cum Dev Effort). The
effort that is actually needed to complete the development activity is determined by
multiplying the number of development units remaining to be developed (i.e., pcvd
total dev units - Cum Units Developed) and the actual development production rate
(actual dev prod rate).

The effort needed for development defect correction depends on the amount
of detected development defects (Detected Dev Defects) and the manpower needed to
fix a development defect (MP fo fix a dev defect). The actual effort still needed for
development QA is modeled as a fraction (Actual Frac MIP on QA) of the actual devel-

opment effort still needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actuaf Frac MP On QA

(=]

7N
v,

ink ptanned effort to dev phase

Cum Dev Effort

planned dev prod rite

X »
A anuron O~

dev rate
Cum Units Deved
Cum Units Developed Detected Dev Defects
dev prod rall
ial dev efio eeded
' dev defect correctiop effort needed
D) s
‘s ‘o
pevd total dev ptwd dev pfiase e needed MP to fix 3 dev defect
Cum Oev Phase Effost
PG actual dev effort needed . ‘ -
dev QA MP neelled dev phase effgt remaining
AcustFrac yb on 0p @,

current planned dev phase effort g

QA MP inc rate Y
\—

init planned effoct to dev phase

Figure A.14. The Development Manpower Needed sector.

A.5.7 The SIT Manpower Needed Sector

188

As shown in figure A.15, the SIT Manpower Needed sector determines, at any

stage of the System Integration and Test (SIT) phase, the manpower needed to com-

plete the SIT phase, including manpower needed for system integration, system test,

and defects correction.

The perception of the manpower still needed to complete the SIT phase is

modeled as a weighted average (weight to actual SIT MP needed) of the planned SIT

phase effort remaining (SIT effort remaining) and the actual SIT phase effort needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189
The actual effort still needed to complete the SIT phase is the sum of the actual inte-

gration manpower needed (actual itg MP needed), the actual system test manpower
needed (actual system test M[P needed), and the defect found in the system test correc-
tion effort needed (def FIT correction effort needed).

The actual effort still needed to complete the system integration activity is
determined by dividing the total number of development units that have been inte-
grated (Cum Units Integrated) by the actual effort that was spent on it (System [ntegra-
tion Effort). The effort that is actually needed to complete the system integration
activity is determined by multiplying the number of development units remaining
to be integrated (i.e., pcvd total dev units - Cum Units Integrated) and the actual inte-
gration productivity (actual itg prod).

The actual effort still needed to complete the system test activity is deter-
mined by dividing the total number of integrated units that have been tested (Cum
Units Tested) and the actual effort that was spent on it (System Test Effort). The effort
that is actually needed to complete.the system test activity is determined by multi-
plying the number of integrated units remaining to be tested (i.e., pcvd total dev units
- Cum Units Tested) and the actual system test productivity (actual system test prod).

The actual effort needed for defects found in system test correction depends
on the amount of detected defects (Defects Found in SIT) and the manpower needed

to fix a defect found in system test (effort to correct a defect FIT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

unils integration rate Defects Found in SIT
’ = :
‘e Cum Units Integrated Defects FIT Correction Effort
S o pevd def FIT correction prod
effort to correct a defect FIT
integrated units cum rate i
)
actual inlg, def FIT on effort needed
actual def FIT ion prod
System Integration Effort actuai intg MP n

planned def FIT commect prod ~ Defects FIT Corrected

1’) f . ort Cum SIT Effort
hed inlg prod pevd toty dev ui
SIT effort r XQing
4
v, -
current plan SIT effort t sgactual SIT MP negded actual systerh teshWIP need
s current planded SIT e -
\
Yo Units Tested tov
frac units tested pevd totat dev units

- /“'
\ v
L ‘o

init planned effoct to SIT

frac planned SIT on tes|
system t

planned system test prod System Test Effort

Figure A.15. The SIT Manpower Needed sector.

A.6 The Planning Sector

The Planning sector, as shown in figure A.16, is the entry point to the CSE-SD
model. Its main functions are to compute and distribute the estimated effort, sched-
ule, and work force to different phases of the software development life cycle. Before
initiating a software development project, project managers must estimate three
things before a project begins: how long it will take, how much effort will be

required, and how many people will be involved [61]. Accurate estimation of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191
project effort, schedule, and required work force, however, relies on an accurate esti-

mate of the product size.

To run the model, the simulator must provide an initial value for each of the
four parameters, that is, initial estimate of the project size (estimate of project size), ini-
tial estimate of the required effort (initial effort estimate), estimated project schedule
(initial duration estimate), and average work force (average WF). One also needs to
determine how to distribute the planned project effort to different development
phases (pct effort to regs, pct effort to dev, and pct effort to SIT).

After determining the average work force (average WF) and the initial percent-
age of experienced work force (init pct staff exp), the initial number of experienced
work force (init exp WF) and initial number of new work force (init neww WF) are

determined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

Figure A.16. The Planning sector.

A.7 The Project Control Sector

The Project Control sector, as shown in figure A.17, models management func-
tions that are involved in the monitoring and control of a software development
project. Monitoring is achieved by measuring and comparing the perceived software
project’s progress with the planned software development progress. In our model,
project monitoring is achieved by comparing the project effort perceived still needed
to complete the project (pcvd project effort needed) and the remaining planned project
effort (remaining project effort). Ideally, if the project is on track and proceeds accord-

ing to the schedule, these two measures should be identical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193
If the project is perceived to be behind schedule (i.e, the perceived project

effort needed exceeds remaining project effort), project staff members usually will
work harder and/or work overtime trying to handle the effort gap (MP gap handled)
and bring the project back on track. However, when the effort gap exceeds what they
are able to handle, the effort gap will be reported (project effort gap reported).

On the other hand, if the project is perceived to be ahead of schedule (i.e., the
remaining project effort exceeds the perceived project effort needed to complete the
project), project staff members usually will absorb a portion of the effort excess (MP
excess absorbed) by increasing their slack time (i.e., time spent on nonproject-related
events). However, when the effort excess exceeds what they are able to absorb, the
effort excess will be reported (project effort gap reported).

Corrective actions are taken when the project effort perceived still needed to
complete the project (pcvd project effort needed) deviates significantly from the remain-
ing project effort. Corrective actions that usually are taken by software project man-
agers are modeled in CSE-SD:

1. Modify planned project effort (Planned Project Effort) and schedule (Planned
Project Duration).
2. Change planned work force level (target WF).

3. Adjust planned QA effort, such as design review, code inspection, and testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

Figure A.17. The Project Control sector.

A.8 The Project Scope Change Sector

As shown in figure A.18, the Project Scope Change sector models the change in
the scope of a software project. Reasons that cause project scope to change include
incomplete and conflicting requirements specifications, requirements uncovered due
to project underestimation, and new requirements. The source that causes the origi-

nal project scope to change is represented as the stock parameter Unplanned Regs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195
The frac unplanned reqs discovered per day (C1, C2, and C3) parameter is defined

as a function of project progress (modeled as the frac project pcvd completed parame-
ter). The number of requirements discovered per day is assumed to decrease as the
project progresses. Once the unplanned requirements are discovered, they are incor-
porated into the project plan. However, it usually takes a certain amount of time
(unplanned reqs inc delay) before they are incorporated into the project plan. The
amount of cumulative requirements changes at any stage of the development life-
cycle is captured in the stock parameter Cum Regs Change. The reqs change rate param-
eter regulates the amount of unplanned requirements incorporated into the project
scope per day.

The perception of the project size (Pcvd Project Size) will change as unplanned
requirements are discovered, existing requirements are deleted or modified, and/or
new requirements are added. To simplify, we treat the modification of a requirement
as a deletion and an addition of a requirement.

Requirements changes cause new raw requirements to be added and/or exist-
ing requirements (raw requirements, specification, or QAed specification) to be
deleted. As depicted at the top-right portion of figure A.19, the amount of raw
requirements being deleted each day (raw regs del due to RC) is determined by multi-
plying the total number of requirements deleted each day (regs deletion due to RC) by
the fraction of raw requirements (frac raw regs). We assume that the deleted require-
ments are distributed uniformly among raw requirements, specification, and QAed
specification. For example, if there are six requirements to be deleted (regs deletion
due to RC = 6) and currently there are 10 raw requirements, 20 specifications, and 30
QAed specifications, then one raw requirements (frac raw reqs = 1/6), two specifica-
tions (frac spec = 2/6), and three QAed specifications (frac QAed spec = 3/6) will be

deleted. The amount of specification and QAed specification being deleted each day

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196
(spec del due to RC and QAed spec del due to RC) is determined in a similar manner. It is

determined by multiplying the total number of requirements deleted each day (regs
deletion due to RC) and the fraction of specification (frac spec) by the fraction of QAed
specification (frac QAed spec), respectively.

As illustrated in the right-bottom portion of figure A.19, the amount of devel-
opment units, units developed, and QAed development units being deleted each
day (raw dev units del due to RC, deved units del due to RC, and QAed units del due to RC)
is determined in a similar manner. It is determined by multiplying the total number
of development units deleted each day (dev units deletion due to RC) by the fraction of
raw development units (frac raw dev units), the fraction of developed units (frac deved

units) and the fraction of QAed units (frac QAed units), respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

frac unplanned reqs gscovered per day C2

frac project p4
,d

frac unplanned regs di

Cum Discovered Reqs
raw reqs inc due lo regs int . d
A 4

LOC per regs frac regs addition reqs defetion due to int

Figure A.18. The Project Scope Change sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

frac QAsg unsts QAed urits det cue 10 Nt

Figure A.19. Determine the amount of raw requirements, specifications, QAed
specifications, development units, developed units, and QAed development
units that are to be deleted due to the discovery of unplanned requirements
and the resolution of interteam problems.

A.9 The Interteam Interactions Sector

As shown in figure A.20, the Interteam Interactions sector models the genera-
tion, detection, and resolution of problems and issues caused by multiple concurrent
teams that could have been avoided if done by a single team. Multiple teams work-
ing on related subsystems may disrupt the system integrity. In requirements specifi-

cations, for example, this can cause inconsistent or incomplete specifications. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199
design and implementation, simultaneous updates to a single module may violate

that module’s consistency [14]. Interteam problems are classified into requirements
phase problems and development phase problems and are modeled as requirements
interferences and development interferences, respectively.

Interferences caused by concurrent development teams are assumed to be hid- -
den (Undetected Reqs Ints and Undetected Dev Ints) until some types of interteam syn-
chronization and/or coordination activities are performed, for example, interteam
requirements specification and design reviews. The speed at which the hidden inter-
ferences are detected is assumed to be dependent on the effort allocated to interteam
issues (daily MP to int detection) and the average effort needed to detect an interfer-
ence (effort to detect a reqs int and effort to detect a dev int).

Detected interferences of the requirements specification (Detected Regs Ints) are
resolved by modifying or clarifying the requirements specification. The rate at which
the requirements interferences are resolved (regs int resolution) is decided by how
long the detected interferences are to be resolved (int resolution delay). That is,

reqs int resolution = Detected Regs Ints / int resolution delay
The resolution of development interferences was modeled in a similar way.

Undetected interferences tend to propagate through succeeding tasks that
build on one another, such as through design and coding tasks built on inconsistent
requirement specifications. Two sources contribute to the growth of undetected
development interferences (Undetected Dev Ints): development interference genera-
tion (dev int gen) and development interference regeneration (dev int regen). Develop-
ment interference generation depends on how fast the development tasks are done
(dev rate) and the requirements interference density (reqs int density), which is
defined as the amount of undetected requirements interferences divided by the

number of specification tasks completed. Similarly, the regeneration of development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

interferences depends on the development rate and the development interference

density (dev int density). A higher development interference density will regenerate

more interferences.

N -

number of teams
across team interfgrence amplification

,~
fra ject pcvd compieted

etacted Reqs Ints Detected Reqs In

s int det

Units To Be Developed

frac daily MP to izt detection

reqgs int dX\sity
Reqs Ints Resolved

reqs int resolution

o
L

fort to detect a regs int

Escaped Regs Ints
intsto dev

Detected Dev In

daily MJ to int\detection

]

l

N -
dev units perreqs nt

.~
1

~ -

total daily MP

ution delay

Dev Ints Resolved

dev int resolytion

Cum Units Devejefed

N

fracdevint

’

]
Pl

3
~

mult to across team int amp

N

across team interference amplification

{1

ol

Int Detection Effort

Figure A.20.The Interteam Interactions sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B
CSE-SD MODEL EQUATIONS

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

Determine Defect Rate

O dev_defects_committed_per_KLOC = system_complexity_effect + nom_dev_defects_per_KLOC*
(WF_mix_effect_on_dev_def gen/1)*

(SP_effect_on_dev_def gen/1)*

(act_dev_def_density_effect_on_dev_def_gen/1)

nom_component_size = 100

nom_number_of_components = Pcvd_Project_Size*1000/nom_component_size
SP_effect_on_dev_def_gen = GRAPH(schedule_pressure)

(-4.00, 0.9), (-2.00, 0.94), (0.00, 1.00), (2.00, 1.05), (4.00, 1.14), (6.00, 1.24), (8.00, 1.36), (10.0, 1.50)
DOCUMENT:

Adapted from the *Mulitiplier to Error Generation Due to Schedule Pressure” parameter [7]

Q@ system_complexity_effect = GRAPH(average_component_size / nom_component_size)

{0.1, 3.50), (0.3, 1.77), (0.5, 1.00), (0.7, 0.6), (0.9, 0.75), (1.10, 0.95), (1.30, 1.10), (1.50, 1.30), (1.70,
1.60), (1.90, 1.90), (2.10, 2.20)

WF_mix_effect_on_dev_def_gen = GRAPH(frac_staff_exp)

(0.00, 2.00), (0.2, 1.80), (0.4, 1.60), (0.6, 1.40), (0.8, 1.20), (1.00, 1.00)

DOCUMENT:

Adapted from the "Multiplier to Error Generation Due to Workforce Mix" parameter [7]

wele

)

Determine Needed Workforce
O current_time = TIME * time_scaling_factor
(O new_planned_WF = planned_WF_20"staffing_plan_stability + target WF*(1-staffing_plan_stability)
O target WF_level = (WF_safety_factor*new_planned_WF)*(1-WF_stability) + current WF*WF_stability
(O time_scaling_factor = 633/682
(O WF_safety_factor = 1
-* planned_WF_0 = GRAPH(current_time)
(0.00, 6.50), (50.0, 7.50), (100, 10.0), (150, 14.0), (200, 24.0), (250, 31.0), (300, 33.0), (350, 32.5),
(400, 31.0), (450, 29.5), (500, 28.0), (550, 26.0), (600, 25.0), (650, 24.0)
DOCUMENT:
The planned work force distribution (BRAK = 0%)
Calibrated to produce similar work force distribution as that of COCOMO 2.0 (BRAK = 0%)

i.» planned_WF_10 = GRAPH(cumrent_time)

(0.00, 6.50), (50.0, 8.00), (100, 10.0), (150, 15.0), (200, 24.0), (250, 30.0), (300, 37.0), (350, 38.0),
(400, 33.0), (450, 30.0), (500, 27.0), (550, 26.0), (600, 26.0), (650, 25.0)

DOCUMENT:

The planned work force distribution (BRAK = 10%)

Calibrated to produce similar work force distribution as that of COCOMO 2.0 (BRAK = 10%)

- planned_WF_20 = GRAPH(current_time)
(0.00, 6.50), (50.0, 8.00), (100, 11.0), (150, 16.0), (200, 28.0), (250, 36.0), (300, 40.0), (350, 37.0),
(400, 33.0), (450, 30.0), (500, 28.0), (550, 26.0), (600, 24.0), (650, 24.0)
DOCUMENT:
The planned workforce distribution {(BRAK = 20%)
Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 20%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&

planned_WF_25 = GRAPH(current_time)

{0.00, 6.50), (50.0, 7.00), (100, 9.00), (150, 20.0), (200, 30.0), (250, 40.0), (300, 41.0), (350, 38.0),
(400, 33.0), (450, 29.0), (500, 26.0), (550, 25.0), (600, 24.0),(650, 24.0)

DOCUMENT:

The planned workforce distribution (BRAK = 25%)

Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 25%)

%) planned_WF_30 = GRAPH(current_time)

(0.00, 6.50), (50.0, 7.00), (100, 9.00), (150, 20.0), (200, 30.0), (250, 40.0), (300, 41.0), (350, 39.0),
(400, 35.0), (450, 30.0), (500, 26.0), (550, 25.0), (600, 24.0),(650, 24.0)

DOCUMENT:

The planned workforce distribution (BRAK = 30%)

Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 30%)

planned_WF_40 = GRAPH(current_time)

(0.00, 6.50), (50.0, 7.50), (100, 10.0), (150, 19.0), (200, 30.0), (250, 36.0), (300, 40.0), (350, 42.0),
(400, 41.0), (450, 38.0), (500, 33.0), (550, 29.0), (600, 27.0), (650, 26.0)

DOCUMENT:

The planned workforce distribution (BRAK = 40%)

Calibrated to produce similar workforce distribution as that of COCOMO 2.0 (BRAK = 40%)

«} staffing_plan_stability = GRAPH(time_scaling_factor * project_time_remaining / WF_production_delay’
(0.00, 0.00), (0.5, 0.048), (1.00, 0.138), (1.50, 0.312), (2.00, 0.582), (2.50, 0.75), (3.00, 0.87), (3.50,
0.972), (4.00, 0.996), (4.50, 1.00), (5.00, 1.00)

L

1} WF_stability = GRAPH(project_time_remaining / WF_production_delay)

(0.00, 1.00), (0.3, 1.00), (0.6, 0.9), (0.9, 0.8), (1.20, 0.126), (1.50, 0.018), (1.80, 0.00)
DOCUMENT:

Adapted from the "Willingness to Change Work Force Level" (WCWF 1) parameter [7]

Development Defects and Rework
(C] Cum_Dev_Defects_Bad_Fixes(t) = Cum_Dev_Defects_Bad_Fixesi(t - dt) + (dev_def_bad_fixes_rate) *
dt
INIT Cum_Dev_Defects_Bad_Fixes =0
INFLOWS:
& dev_def bad_fixes_rate = dev_def_fix_rate * dev_def bad_fixes_ratio
[C] Cum_Dev_Defects_Escaped(t) = Cum_Dev_Defects_Escaped(t - dt) + (dev_def_esc_rate) * dt
INIT Cum_Dev_Defects_Escaped =0
INFLOWS:
& dev_def_esc_rate = dev_QA_rate*(LOC_per_dev_unit1000)*dev_defect_density -
dev_def _detect_rate
(C] Cum_Dev_Defects_Fixed(t) = Cum_Dev_Defects_Fixed(t - dt) + (dev_def_fix_rate) * dt
INIT Cum_Dev_Defects_Fixed =0
INFLOWS:
& dev_def fix_rate = daily_MP_to_dev_defect_correction / (MP_to_fix_a_dev_defect+0.000001)
DOCUMENT: tasks reviewed/day

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

[J Detected_Dev_Defects(t) = Detected_Dev_Defects(t - dt) + (dev_def_detect_rate - dev_def fix_rate) *
dt
INIT Detected_Dev_Defects =0

INFLOWS:
% dev_def detect_rate = daily MP_to_dev_QA/ (effort_to_detect a_dev_defect/1)
OUTFLOWS:
% dev_def fix_rate = daily_MP_to_dev_defect_correction / (MP_to_fix_a_dev_defect+0.000001)
DOCUMENT: tasks reviewed/day

[Passive_Dev_Defects(t) = Passive_Dev_Defects(t - dt) + (active_dev_def retiring_rate -
passive_dev_defects_to_test - passive_dev_def det_rate) * dt
INIT Passive_Dev_Defects =0

INFLOWS:

& active_dev_def_retiring_rate =
Undected_Active_Dev_Defects*active_dev_def _retirement_fraction +
dev_def_recycling_rate *(1-frac_active_defects)

OUTFLOWS:
S passive_dev_defects_to_test = IF (frac_daily_MP_to_SIT>0)
THEN (units_integration_rate*LOC_per_dev_unit/1000) * 23
ELSEO
DOCUMENT: 27 defects/unit integrated

5 passive_dev_def _det_rate = dev_def detect_rate * (1-frac_active_defects)

(O Undected_Active_Dev_Defects(t) = Undected_Active_Dev_Defects(t - dt) + (dev_def_gen_rate +
active_dev_def_recycling_rate - dev_def_esc_rate - active_dev_def_retiring_rate -
act_dev_def_det_rate) * dt
INIT Undected_Active_Dev_Defects =0
INFLOWS:

% dev_def gen_rate = (1-post_QA_spec_defect_density)*(dev_rate*LOC_per_dev_unit/1000)*
dev_defects_committed_per KLOC +

0*(post_QA_spec_defect_density*dev_rate*LOC_per_reqs/1000)*dev_defects_committed_per
_KLOC
& active_dev_def recycling_rate = dev_def recycling_rate*frac_active_defects
OUTFLOWS:
& dev_def esc_rate = dev_QA_rate*(LOC_per_dev_unit/1000)*dev_defect_density -
dev_def detect_rate
% active_dev_def_retiring_rate =
Undected_Active_Dev_Defects*active_dev_def_retirement_fraction +
dev_def_recycling_rate *(1-frac_active_defects)
& act_dev_def det_rate = dev_def_detect_rate * frac_active_defects
(O active_dev_defect_density = Undected_Active_Dev_Defects/
(Cum_Units_Deved*LOC_per_dev_unit/1000+0.00001)
(O dev_defect_density = (Undected_Active_Dev_Defects+Passive_Dev_Defects)) /
(Cum_Units_Deved*LOC_per_dev_unit/1000+0.00001)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

" dev_def bad_fixes_ratio = 0.075

DOCUMENT:

Development (design and coding) defects bad fixes ratio

Set to 0.075 [Jones 91]

dev_def_recycling_rate = dev_def_esc_rate + dev_def_bad_fixes_rate
effort_to_detect_a_dev_defect = nominal_effort_to_detect_a_dev_defect *
effect_of_dev_def density_on_det_effort
active_dev_def_retirement_fraction = GRAPH(frac_dev_pcvd_completed)
{0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.01), (0.5, 0.02), (0.6, 0.03), (0.7, 0.04), (0.8, 0.1’
(0.9, 0.3), (1, 1.00)

DOCUMENT:

Adapted from the "Active Error Retirement Rate” parameter [7]

- * act_dev_def density_effect_on_dev_def_gen = GRAPH(SMTH1(active_dev_defect_density, 40))
(0.90, 1.00), (10.0, 1.10), (20.0, 1.20), (30.0, 1.33), (40.0, 1.45), (50.0, 1.60), (60.0, 2.00), (70.0, 2.50),
(80.0, 3.25), (0.0, 4.35), (100, 6.00)

DOCUMENT:

The delay before one defect amplifies additional defects

The average delay is set at two months (40 working days) [7]

effect_of_dev_def_density_on_det_effort = GRAPH(dev_defect_density)
(0.00, 50.0), (1.00, 36.0), (2.00, 26.0), (3.00, 17.5), (4.00, 10.0), (5.00, 4.00), (6.00, 1.75), (7.00, 1.20),
(8.00, 1.00), (9.00, 1.00), (10.0, 1.00)
> frac_active_defects = GRAPH(frac_dev_pcvd_completed)

(0.00, 1.00), (0.1, 1.00), (0.2, 1.00), (0.3, 1.00), (0.4, 0.95), (0.5, 0.85), (0.6, 0.5), (0.7, 0.2), (0.8, 0.075
(0.9, 0.00), (1, 0.00)
DOCUMENT:
The percentage of active defects is defined as a graph function of percent of development completed
Adapted from the "Percent Active Errors” parameter [7]

nominal_effort_to_detect_a_dev_defect = GRAPH(frac_dev_pcvd_completed)

(0.00, 0.4), (0.1, 0.4), (0.2, 0.39), (0.3, 0.375), (0.4, 0.35), (0.5, 0.3), (0.6, 0.25), (0.7, 0.225), (0.8, 0.21'
(0.9,0.2), (1,0.2)

DOCUMENT:

Average QA effort needed to detect a development (including design and coding) defect

Adapted from the "Nominal QA Effort Needed to Detect an Error* parameter [7]

nom_dev_defects_per_KLOC = GRAPH(frac_dev_pcvd_completed)

(0.00, 25.0), (0.2, 23.9), (0.4, 21.8), (0.6, 15.9), (0.8, 13.6), (1.00, 12.5)
DOCUMENT:

Nominal development (design and coding) defects committed per KLOC

Adapted from the "Nominal Number of Errors Committed per KDSI" parameter [7]

QO

)

()

)

Development Manpower Allocation
(O daily_MP_to_dev = IF(Units_To_Be_Developed<0.1)
THEN O

ELSE
MAX(daily_MP_to_dev_phase-daily_MP_to_dev_QA-daily_MP_to_dev_defect_correction,0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

O daily_MP_to_dev_defect_correction = IF (dev_and_QA_complete=1)
THEN daily_MP_to_dev_phase
ELSE IF(Units_To_Be_Developed<0.1)
THEN daily_MP_to_dev_phase - daily_MP_to_dev_QA
ELSE MIN(MP_to_fix_a_dev_defect*desired_dev_defect correction_rate,
daily_MP_to_dev_phase-daily_MP_to_dev_QA)

(O daily_MP_to_dev_phase = IF(frac_dev_pcvd_completed=1)
THEN O
ELSE
total_daily_ MP * frac_daily_MP_to_dev

O daily_MP_to_dev_QA = daily_MP_to_dev_phase*Actual_Frac_MP_On_QA
(O desired_dev_defect_correction_rate = Detected_Dev_Defects / dev_defect_correction_delay
(O dev_and_QA_complete = IF (Units_To_Be_Developed<1 AND Units_Developed<1)
THEN 1
ELSEO
_* dev_defect_comection_delay = 15
DOCUMENT:
Set to 15 working days

Similar to the "Desired Rework Delay" parameter [7]

frac_daily_MP_to_dev = (1-frac_daily_MP_to_reqs) * (1-frac_dev_MP_to_SIT)
MP_to_fix_a_dev_defect = daily_MP_factor*nominal_effort_to _fix_a_dev_defect

frac_dev_MP_to_SIT = GRAPH(frac_dev_pcvd_completed)

(0.5, 0.00), (0.55, 0.00), (0.6, 0.00), (0.65, 0.00), (0.7, 0.00), (0.75, 0.00), (0.8, 0.00), (0.85, 0.00), (0.8,
0.00), (0.95, 0.00), (1.00, 1.00)

DOCUMENT:

Determined by project managers to simulate different manpower allocation policy

nominal_effort_to_fix_a_dev_defect = GRAPH(frac_dev_pcvd_completed)
(0.00, 0.6), (0.2, 0.575), (0.4, 0.5), (0.6, 0.4), (0.8, 0.325), (1.00, 0.3)
DOCUMENT:

Nominal defect correction effort

Adapted from the "Nominal Rework Effort Needed per Error” parameter [7]

200

()

Development Manpower Needed
3 Actual_Frac_MP_On_QA(t) = Actual_Frac_MP_On_QA(t - dt) + (QA_MP_inc_rate) * dt
INIT Actual_Frac_MP_On_QA =0.1
INFLOWS:
% QA_MP_inc_rate = 0* (target AFMPQA-Actual_Frac_MP_On_QA)/1
(] Cum_Units_Deved(t) = Cum_Units_Deved(t - dt) + (sw_unit_developing_rate) * dt
INIT Cum_Units_Deved =0
INFLOWS:
% sw_unit_developing_rate = dev_rate
(O actual_dev_effort_needed = (pcvd_total_dev_units-Cum_Units_Developed) /
(actual_dev_prod_rate+0.000001)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(O actual_dev_prod_rate = IF(Cum_Dev_Effort>0)

THEN Cum_Units_Deved/(Cum_Dev_Effort+0.060001)

ELSE planned_dev_prod_rate

current_planned_dev_phase_effort = init_planned_effort_to_dev_phase *

{pcvd_total_dev_units/INIT (pcvd_total_dev_units))

dev_defect_comection_effort_needed = Detected_Dev_Defects * MP_to_fix_a_dev_defect
dev_phase_effort_remaining = MAX(0, current_planned_dev_phase_effort - Cum_Dev_Phase_Effort)

dev_QA_MP_needed = (actual_dev_effort_needed/(1-Actual_Frac_MP_On_QA)) *
Actual_Frac_MP_On_QA

pevd_dev_phase_effort_needed = weight_to_actual_dev_effort_needed*(actual_dev_effort_needed+
dev_defect_comection_effort_needed + dev_QA_MP_needed) +
(1-weight_to_actual_dev_effort_needed)*dev_phase_effort_remaining

O O 00 O

O

planned_dev_prod_rate = pcvd_total_dev_units /
(init_planned_effort_to_dev_phase*{1-Actual_Frac_MP_On_QA))

DOCUMENT:

The planned development production rate

Perceived total number of development units divided by the planned development effort

. target AFMPQA = GRAPH(schedule_pressure)

(0.00, 0.15), (1.00, 0.15), (2.00, 0.15), (3.00, 0.15), (4.00, 0.15), (5.00, 0.145), (6.00, 0.131), (7.00,
0.102), (8.00, 0.071), (.00, 0.055), (10.0, 0.05)

DOCUMENT:

The effect of schedule pressure on QA manpower allocation

Adapted from the "Planned Fraction of Manpower for QA" parameter [7]

weight_to_actual_dev_effort_needed = GRAPH(frac_dev_pcvd_completed)

(0.00, 0.00), (0.1, 0.01), (0.2, 0.05), (0.3, 0.174), (0.4, 0.432}, (0.5, 0.714), (0.6, 0.858), (0.7, 0.936),
(0.8, 0.984), (0.9, 0.996), (1, 1.00)

DOCUMENT:

Adapted from the "Muttiplier to Productivity Weight Due to Resource Expenditures” and the
"Multiplier fo Productivity Weight Due to Development® parameters [7]

Development Work Flow
T3 Cum_Dev_Units(t) = Cum_Dev_Units(t - dt) + (dev_units_cum_rate - dev_units_del_rate) * dt
INIT Cum_Dev_Units =0
INFLOWS:
& dev_units_cum_rate = units_TBD_incoming_rate
OUTFLOWS:
% dev_units_del_rate = raw_dev_units_del_due_to_RC + dev_units_del_due_to_int
] Cum_Units_Developed(t) = Cum_Units_Developedit - dt) + (deved_units_cum_rate -
deved_units_del_rate) * dt
INIT Cum_Units_Developed =0
INFLOWS:
% deved_units_cum_rate = dev_rate
OUTFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

& deved_units_del_rate = deved_units_del_due_to_RC + deved_units_del_due_to_int
] Cum_Units_QAed(t) = Cum_Units_QAed(t - dt) + (QAed_units_cum_rate - QAed_dev_units_del_rate)
* dt
INIT Cum_Units_QAed =0
INFLOWS:
% QAed_units_cum_rate = dev_QA_rate
OUTFLOWS:
S QAed_dev_units_del_rate = QAed_units_del_due_to_RC + QAed_units_del_due_to_int
] Deleted_Deved_Units(t) = Deleted_Deved_Units(t - dt) + (deved_units_del_rate) * dt
INIT Deleted_Deved_Units =0
INFLOWS:
3 deved_units_del_rate = deved_units_del_due_to_RC + deved_units_del_due_to_int
] Deleted_Dev_Units(t) = Deleted_Dev_Units(t - dt) + (dev_units_del_rate) * dt
INIT Deleted_Dev_Units = 0
INFLOWS:
3> dev_units_del_rate = raw_dev_units_del_due_to_RC + dev_units_del_due_to_int
(] Deleted_QAed_Deved_Units(t) = Deleted_QAed_Deved_Units(t - dt) + (QAed_dev_units_del_rate) * d

INIT Deleted_QAed_Deved_Units = 0
INFLOWS:
S QAed_dev_units_del_rate = QAed_units_del_due_to_RC + QAed_units_del_due_to_int
(] QAed_Units_Deved_To_Test(t) = QAed_Units_Deved_To_Test(t - dt) + (QAed_deved_units_to_test) *
dt
INIT QAed_Units_Deved_To_Test=0
INFLOWS:
% QAed_deved_units_to_test = dev_QA _rate
(] Units_Developed(t) = Units_Developed(t - dt) + (dev_rate - dev_QA _rate - deved_units_deletion) * dt
INIT Units_Developed=0
INFLOWS:
& dev_rate = daily_MP_to_dev * dev_prod_ratio * dev_prod_rate*degree_of_concurrency * DT
DOCUMENT:
Development rate (development units worked per day) is determined by three parameters: daily
manpower allocated to development, development production ratio, and sequential constraint
Sequential constraint (defined as degree of concurrency)

OUTFLOWS:
¥ dev_QA_rate = (Units_Developed/dev_QA_duration)*
(daily_MP_to_dev_QA/(daily_MP_to_dev_QA+0.00001))
DOCUMENT:
Number of development units that are quality assured per day
3 deved_units_deletion = deved_units_del_due_to_RC + deved_units_del_due_to_int
3 Units_QAed(t) = Units_QAed(t - dt) + (dev_QA _rate - QAed_deved_units_to_test -
QAed_units_deletion) * dt
INIT Units_QAed =0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S dev_QA_rate = (Units_Developed/dev_QA_duration)* 209
(daily_MP_to_dev_QA/(daily_MP_to_dev_QA+0.00001))
DOCUMENT:
Number of development units that are quality assured per day

OUTFLOWS:
S QAed_deved_units_to_test = dev_QA_rate
S QAed_units_deletion = QAed_units_del_due_to_RC + QAed_units_del_due_to_int
(] Units_To_Be_Developed(t) = Units_To_Be_Developedit - dt) + (units_TBD_incoming_rate - dev_rate -
dev_units_deletion) * dt
INIT Units_To_Be_Developed =0
INFLOWS:
S units_TBD_incoming_rate = QAed_spec_to_dev_rate*dev_units_per_reqs +
dev_units_inc_due_to_int
OUTFLOWS:
T dev_rate = daily MP_to_dev * dev_prod_ratio * dev_prod_rate*degree_of_concurrency * DT
DOCUMENT:
Development rate (development units worked per day) is determined by three parameters: daily
manpower allocated to development, development production ratio, and sequential constraint
Sequential constraint (defined as degree of concurrency)

P dev_units_deletion = raw_dev_units_del_due_to_RC + dev_units_del_due_to_int
(O dev_prod_rate = actual_staff_prod_rate / LOC_per_dev_unit
DOCUMENT:
Development units worked per day
dev_prod_ratio = 1
dev_QA_duration= 10
DOCUMENT:
Set to 10 working days [7]
dev_units_per_regs = LOC_per_reqs/LOC_per_dev_unit
frac_dev_pcvd_completed = Cum_Units_QAed / pcvd_total_dev_units
LOC_per_dev_unit = 60
DOCUMENT:
A development unit is set to 60 lines of source code (7]
pevd_total_dev_units = (Pcvd_Project_Size*1000VLOC_per_dev_unit
degree_of_concurrency = GRAPH(frac_dev_pcvd_compieted)
(0.00, 1.00), (0.1, 1.00), (0.2, 1.00), (0.3, 0.7), (0.4, 0.7), (0.5, 0.7), (0.6, 0.7), (0.7, 0.5), (0.8, 0.5), (0.9,
a.5), (1, 0.5)
DOCUMENT:
Degree of concurrency (defined as the ratic of the number of development units ready for assignment

and the number of development units that staff members are able to perform (i.e., sequentia! constrain

' ‘lo

OO0

O

The value is determined project managers to simulate different degrees of sequential constraints

Fraction Project Completed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

frac_project_pcvd_completed = frac_spec_pcvd_completed*PC_weight_to_reqs +
frac_dev_pcvd_completed*PC_weight_to_dev +
frac_units_tested*PC_weight_to_SIT

PC_weight_to_dev =0.75

PC_weight_to_regs = 0.25

PC_weight to SIT=0

project_complete = iF(frac_units_tested*100>98 AND defects_removed=1)

THEN PAUSE

ELSEQ

O

0000

Interteam Interactions
(] Detected_Dev_Ints(f) = Detected_Dev_Ints(t - dt) + (dev_int_det - dev_int_resolution) * dt
INIT Detected_Dev_Ints =0
INFLOWS:
& dev_int_det = IF(units_integration_rate>0.1)
THEN ints_density * units_integration_rate
ELSE daily MP_to_int_detection/ (effort_to_detect_a_dev_int*1)
OUTFLOWS:
% dev_int_resolution = Detected_Dev_|Ints/int_resolution_delay
(] Detected_Reqs_ints(t) = Detected_Reqs_Ints(t - dt) + (reqs_int_det - reqs_int_resolution) * dt
INIT Detected_Reqs_Ints = 0
INFLOWS:
& reqs_int_det = daily_MP_to_int_detection / (effort_to_detect_a_reqs_int*1)
OUTFLOWS:
% reqs_int_resolution = Detected_Reqs_Ints/int_resolution_delay
[C] Dev_Ints_Resolved(t) = Dev_Ints_Resolved(t - dt) + (dev_int_resolution) * dt
INIT Dev_Ints_Resolved =0
INFLOWS: .
2% dev_int_resolution = Detected_Dev_Ints/int_resolution_delay
{1 Escaped_Reqs_Ints(t) = Escaped_Reqs_lInts(t - dt) + (regs_ints_to_dev) * dt
INIT Escaped_Regs_Ints =0
INFLOWS:
& reqs_ints_to_dev = (dev_rate/dev_units_per_regs) * reqs_int_density
] Int_Detection_Effort(t) = Int_Detection_Effort(t - dt) + (int_det_effort_cum_rate) * dt
INIT Int_Detection_Effort =0
INFLOWS:
% int_det_effort_cum_rate = daily_MP_to_int_detection
[J Regs_ints_Resolved(t) = Reqs_Ints_Resolvedit - dt) + (reqs_int_resolution) * dt
INIT Reqgs_Ints_Resolved =0 -
INFLOWS:
& regs_int_resolution = Detected_Regs_Ints/int_resolution_delay
[J Undetected_Dev_lInts(t) = Undetected_Dev_|nts(t - dt) + (dev_int_regen + ints_from_reqs -
dev_int_det) * dt
INIT Undetected_Dev_Ints =0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

<& dev_int_regen = muit_to_across_team_int_amp*across_team_interference_amplification *
(frac_dev_int*dev_rate*dev_phase_interference_amplification® DELAY(dev_int_density,40))

% ints_from_reqs = mult_to_across_team_int_amp * across_team_interference_amplification *
((1-reqs_int_density)*dev_rate*frac_dev_int + reqs_int_density*dev_rate)

CUTFLOWS:

5 dev_int_det = IF(units_integration_rate>0.1)
THEN ints_density * units_integration_rate
ELSE daily_MP_to_int_detection/ (effort ‘to_detect_a_dev_int*1)

(] Undetected_Regs_Ints(t) = Undetected_Reqs_Ints(t - dt) + (reqs_int_gen - reqs_int_det -
reqs_ints_to_dev) * dt
INIT Undetected_Regs_Ints =0
INFLOWS:
& regs_int_gen = IF(frac_project_pcvd_completed>0.5)
THENO
ELSE spec_rate*frac_reqs_int*across_team_interference_amplification *
mult_to_across_team_int_amp
OUTFLOWS:
o regs_int_det = daily_MP_to_int_detection / (effort_to_detect_a_reqs_int*1)
& regs_ints_to_dev = (dev_rate/dev_units_per_reqs) * reqs_int_density
daily_MP_to_int_detection = total_daily_MP * frac_daily_MP_to_int_detection
dev_int_density = Undetected_Dev_|Ints/(Cum_Units_Developed*(1-frac_ints_detected)+0.00001)
frac_ints_detected = Detected_Dev_ints / (Detected_Dev_Ints+Undetected_Dev_Ints+0.000001)
ints_density = Undetected_Dev_Ints / (Units_To_Be_Integrated+0.00001)
int_resolution_delay = 5
DOCUMENT:
Interteam interferences resolution delay
Set to 5 working days based on Fujitsu's experience

mult_to_across_team_int_amp = 0.573

DOCUMENT:
The values are set to model different percentages of rework incurred by muttiple-team concurrent

development
More detailed explanations of F1, F2, and F3 are included in chapter 7

F1:0.213; F2: 0.427; F3:0.573
(O reqs_int_density = Undetected_Regs_Ints/(Units_To_Be_Developed/dev_units_per_reqs+0.000001)

0000

[
9

0

+ across_team _interference_amplification = GRAPH(number_of_teams)

(1.00, 0.00), (2.00, 1.00), (3.00, 1.08), (4.00, 1.20), (5.00, 1.38), (6.00, 1.53), (7.00, 1.73), (8.00, 1.98),
(8.00, 2.25), (10.0, 2.69), (11.0, 3.30)

DOCUMENT:

Interteam interferences amplification caused by muitiple-team concurrent development

Modeled as a nonlinear function of the number of concurrent teams according to Fujitsu's experience

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&

dev_phase_interference_amplification = GRAPH(frac_dev_pcvd_completed)

(0.00, 2.50), (0.1, 2.20), (0.2, 1.90), (0.3, 1.60), (0.4, 1.35), (0.5, 1.10), (0.6, 0.85), (0.7, 0.55), (0.8,
0.35), (0.9, 0.15), (1, 0.00)

DOCUMENT:

Interferences amplification along the dimension of development life cycle

Based on Fujitsu's experience

effort_to_detect_a_dev_int = GRAPH(dev_int_density)

(0.00, 2.00), (0.1, 1.69), (0.2, 1.55), (0.3, 1.41), (0.4, 1.33), (0.5, 1.25), (0.6, 1.19), (0.7, 1.13), (0.8,
1.07), (0.8, 1.05), (1, 1.00)

DOCUMENT:

Average effort to detect an interteam development (design and coding) interference

Modeled as a graph function of development interference density according to Fujitsu’s experience

% effort_to_detect_a_reqs_int = GRAPH(reqs_int_density)
(0.00, 0.203), (0.1, 0.165), (0.2, 0.14), (0.3, 0.13), (0.4, 0.12), (0.5, 0.115), (0.6, 0.11), (0.7, 0.108),
(0.8, 0.104), (0.9, 0.102), (1, 0.1)
DOCUMENT:
Average effort to detect a requirements phase interteam interference
Modeled as a graph function of requirements interference density according to Fujitsu's experience

: frac_daily_MP_to_int_detection = GRAPH(IF(number_of_teams<=1)

THEN O

ELSE frac_project_pcvd_completed)

(0.00, 0.00), (0.1, 0.06), (0.2, 0.05), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, 0.00), (0.8,
0.05), (0.9, 0.00), (1, 0.00)

DOCUMENT:

The fraction of daily manpower that is allocated to interteam interference detection

)

)

i_* frac_dev_int = GRAPH(interteam_communication_overhead)

(0.00, 0.1), (0.1, 0.09), (0.2, 0.083), (0.3, 0.077), (0.4, 0.074), (0.5, 0.0705), (0.6, 0.068), (0.7, 0.066),
(0.8, 0.064), (0.9, 0.062), (1, 0.06)

DOCUMENT:

The fraction of development tasks that are considered as interferences

Modeled as a graph function of interteam communication overhead

The general shape of the graph is based on Fujitsu’s experience

frac_regs_int = GRAPH(interteam_communication_overhead*100)

(0.00, 0.1), (1.00, 0.094), (2.00, 0.087), (3.00, 0.082), (4.00, 0.0765), (5.00, 0.072), (6.00, 0.069),
(7.00, 0.066), (8.00, 0.064), (9.00, 0.062), (10.0, 0.06)

DOCUMENT:

The fraction of requirements specifications that are considered as intefferences

Modeled as a graph function of interteam communication overhead
The general shape of the graph function is based on Fujitsu’s experience

)

Overall Communication Overhead

(J Cum_interteam_Comm_Overhead(t) = Cum_interteam_Comm_Overhead|(t - dt) +
(interteam_comm_cum_rate) * dt
INIT Cum_interteam_Comm_Overhead =0

INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

< interteam_comm_cum_rate = mult_to_interteam_comm_overhead *
interteam_communication_overhead
] Cum_Intrateam_Comm_Overhead(t) = Cum_Intrateam_Comm_Overhead(t - dt) +
(intrateam_comm_factor_cum_rate) * dt
INIT Cum_Intrateam_Comm_Overhead =0
INFLOWS:
< intrateam_comm_factor_cum_rate = intrateam_communication_overhead * number_of_teams

3 Cum_Overali_Comm_Overhead(t) = Cum_Overall_Comm_Overhead(t - dt) +
(overall_comm_overhead_cum_rate) * dt
INIT Cum_Qverall_Comm_Overhead =0
INFLOWS:

% overall_comm_overhead_cum_rate = overall_communication_overhead
Cum_Team_Size(t) = Cum_Team_Size(t - dt) + (team_size_cum_rate) * dt
INIT Cum_Team_Size =0
INFLOWS:

% team_size_cum_rate = average_team_size
average_interteam_comm_overhead = Cum_interteam_Comm_Overhead/(TIME+0.00001)
average_intrateam_comm_overhead = Cum_|Intrateam_Comm_Overhead/(TIME+0.00001)
average_overall_comm_overhead = Cum_Overall_Comm_Overhead/(TIME+0.00001)
average_team_size = current_WF / number_of teams
DOCUMENT:
Total number of current work force level divided by the number of concurrent teams
interteam_to_intrateam_comm_ratio = (100*average_interteam_comm_overhead) /
(100*average_intrateam_comm_overhead+0.00001)
mult_to_interteam_comm_overhead = 20

DOCUMENT:
The value is set to madel different interteam-to-intrateam communication overhead ratio

More detailed explanations are included in chapter 7
M1:0.25; M2: 1.0; M3: 2.0

number_of_teams =10

DOCUMENT:

Total number of concurrent development teams

(O overall_communication_overhead = MIN(1, intrateam_communication_overhead +
interteam_communication_overhead * mult_to_interteam_comm_overhead)

(O project_average_team_size = Cum_Team_Size/(TIME+0.00001)

T interteam_communication_overhead = GRAPH(number_of_teams)

(1.00, 0.00), (2.00, 0.004), (3.00, 0.0085), (4.00, 0.014), (5.00, 0.021), (6.00, 0.028), (7.00, 0.0355),

(8.00, 0.043), (.00, 0.0505), (10.0, 0.063)

DOCUMENT:
nterteam communication overhead is modeled as a function of the number of concurrent teams

W

0000

O

> intrateam_communication_overhead = GRAPH(average_team_size)
(0.00, 0.00), (5.00, 0.015), (10.0, 0.06), (15.0, 0.135), (20.0, 0.24), (25.0, 0.375), (30.0, 0.54)

DOCUMENT:
Intrateam communication overhead is modeled as a function of average team size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Plarning

average_component_size = (initial_num_of_reqs * LOC_per_reqs) / number_of_components
average_WF = ROUND(initial_effort_estimatef/initial_duration_estimate)

BRAK factor=0

DOCUMENT:

Breakage percentage: a COCOMO 2.0 Requirements Volatility measure
estimate_of_project_size = 128

DOCUMENT:

Project size in KLOC

{_ initial_duration_estimate = 19 * 33.3

DOCUMENT:

Initial estimate of project duration

One month is considered as equal to 19 working days

initial_effort_estimate = 19 * (46.1 + 658.9)

DOCUMENT:

Initial estimate of project effort

Derived from a nominal 128 KLOC COCOMO 2.0 project; 46.1 person-months for requirements; 658.9
person-months for development and integration and test

One person-month is considered as equal to 19 person-days

initial_exp_WF = (average_WF"init_staffing_factor) * (init_pct_staff_exp/100)
initial_new_WF = (average_WF"init_staffing_factor) * (1-init_pct_staff_exp/100)
initial_num_of_reqs = (estimate_of_project_size*1000)/LOC_per_reqs
init_pct_staff_exp = 100

init_planned_effort_to_dev_phase = (initial_effort_estimate*pct_effort_to_dev)/100
init_planned_effort_to_reqs = initial_effort_estimate *(pct_effort_to_reqs/100)
init_planned_effort_to_SIT = initial_effort_estimate*(pct_effort_to_SIT/100)
init_staffing_factor = 0.37

LOC_per_regs = 125

DOCUMENT:

A requirements unit is assumed to be 125 LOC large

number_of_components = 128

pct_effort_to_dev=67.3

DOCUMENT:

The percentage of project effort that is allocated to the development (design and coding) phase
Based on COCOMO 2.0 23]

pct_effort_to_reqs =6.5

DOCUMENT:

The percentage of project effort that is allocated to the requirements phase
Based on COCOMO 2.0 [23]

i_; pct_effort_to_SIT =26.2

DOCUMENT:

The percentage of project effort that is allocated to system integration and test
Based on COCOMO 2.0 [23]

(O Unplanned_Regs_Change = initial_num_of_reqs * (BRAK_factor/100)

OO0

()

{

-

)

100000000

O

(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

215

Project Control
(] Pianned_Project_Duration(t) = Planned_Project_Duration(t - dt) + (project_duration_change_rate) * dt
INIT Planned_Project_Duration = initial_duration_estimate

INFLOWS:
% project_duration_change_rate = IF (frac_project_pcvd_completed<1 AND
Planned_Project_Effort>INIT(Planned_Project_Effort))
THEN (target_project_duration-Planned_Project_Duration) / (sched_adjustment_time/DT)
ELSEO
1 Planned_Project_Effort(t) = Planned_Project_Effort(t - dt) + (PPE_change_rate) * dt
INIT Planned_Project_Effort = initial_effort_estimate
INFLOWS:
9 PPE_change_rate = (target_project_effort-Planned_Project_Effort) /
(planned_project_effort_adj_time/DT)
{1 Project_Effort_Expenditure(t) = Project_Effort_Expenditure(t - dt) + (project_effort_cum_rate) * dt
INIT Project_Effort_Expenditure = 0
INFLOWS:
& project_effort_cum_rate = IF(frac_project_pcvd_completed>0.95 AND defects_removed=1)
THEN O
ELSE current WF*DT
] Project_Elapsed_Time(t) = Project_Elapsed_Time(t - dt) + (PET_inc_rate) * dt
INIT Project_Elapsed_Time =0
INFLOWS:
% PET_inc_rate = IF(project_complete)
THEN O
ELSE DT
(O MP_excess_absorbed = MAX(0,
frac_MP_excess_absorbed*(Planned_Project Effort-Project_Effort_Expenditure) -
pcvd_project_effort_needed)
MP_gap_handled = IF(pcvd_project_effort_gap>0)
THEN MIN(pcvd_project_effort_gap, max_MP_shortage_to_be_handled)
ELSEOQ
pevd_project_effort_gap = pcvd_project_effort_needed -
(Planned_Project_Effort-Project_Effort_Expenditure)
pcvd_project_effort_needed =
pcvd_regs_phase_effort_needed+pcvd_dev_phase_effort_needed+pcvd_SIT_effort_needed
planned_project_effort_adj_time =3
DOCUMENT:
The delay in adjusting the perceived project effort
Set to 3 working days (7]
project_effort_gap_reported = pcvd_project_effort_gap - MP_gap_handled + MP_excess_absorbed
project_time_remaining = MAX(Planned_Project_Duration-Project_Elapsed_Time, 0)
remaining_project_effort = MAX(0, target_project_effort-Project_Effort_Expenditure)
schedule_pressure = SMTH1(pcvd_project_effort_gap/100, 40)

0O O O

0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

{* sched_adjustment_time = 3

DOCUMENT:

The delay in adjusting the planned project schedule

Set to 3 working days (i.e., the same as project effort adjustment delay)

target_project_duration = Project_Elapsed_Time+time_needed

target_project_effort = Planned_Project_Effort + project_effort_gap_reported

target WF = [F(project_time_remaining>10)

THEN (Planned_Project_Effort-Project_Effort_Expenditure+project_effort_gap_reported) /

project_time_remaining

ELSE (Planned_Project_Effort-Project_Effort Expenditure+project_effort_gap_reported)/10

O time_needed = IF(current_WF+desired_new_staff>average_WF)
THEN remaining_project_effort / (current_ WF+desired_new_staff)
ELSE remaining_project_effort / average_WF

) frac_MP_excess_absorbed =
GRAPH (pcvd_project_effort_needed/(Planned_Project_Effort-Project_Effort_Expenditure+0.00001))
(0.00, 0.00), (0.1, 0.2), (0.2, 0.4), (0.3, 0.55), (0.4, 0.7), (0.5, 0.8), (0.6, 0.9), (0.7, 0.95), (0.8, 1.00), (0.¢
1.00), (1, 1.00)

@ weight_to_actual_project_effort_needed = GRAPH(frac_project_pcvd_completed)
(0.00, 0.00), (0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7}, (0.8, 0.8), (0.9,
0.9), (1, 1.00)

000

Project Effort 1
] Cum_Dev_Defects_Correction_Effort(t) = Cum_Dev_Defects_Correction_Effort(t - dt) +
(dev_defects_correction_effort_cum_rate) * dt
INIT Cum_Dev_Defects_Correction_Effort = 0
INFLOWS:
% dev_defects_cormection_effort_cum_rate = (DT*daily_MP_to_dev_defect_correction) /
(daily_MP_factor+0.000001)
[CJ Cum_Dev_Effort(t) = Cum_Dev_Effort(t - dt) + (dev_MP_expending_rate) * dt
INIT Cum_Dev_Effort=0
INFLOWS:
& dev_MP_expending_rate = (DT daily_MP_to_dev)/ (daily_MP_factor+0.000001)
[(J Cum_Dev_QA_Effort(t) = Cum_Dev_QA_Effort(t - dt) + (dev_QA_MP_expending_rate) * dt
INIT Cum_Dev_QA_Effort=0
INFLOWS:
% dev_QA_MP_expending_rate = (DT*daily_MP_to_dev_QA) / (daily_MP_factor+0.00001)
(] Regs_Defects_Correction_Effort(t) = Reqs_Defects_Correction_Effort(t - dt) +
(reqs_defects_correction_effort_cum_rate) * dt
INIT Regs_Defects_Correction_Effort =0
INFLOWS:
% reqs_defects_correction_effort_cum_rate = daily_MP_to_spec_defect_correction /
(daily_MP_factor+0.0000001)
[Regs_Spec_Effort(t} = Reqs_Spec_Effort(t - dt} + (spec_effort_cum_rate) * dt
INIT Regs_Spec_Effort =0
INFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

% spec_effort_cum_rate = daily_MP_to_spec / (daily_MP_factor+0.0000001)
] Spec_QA_Effort(t) = Spec_QA_Effort(t - dt) + (spec_QA_effort_cum_rate) * dt
INIT Spec_QA_Effort=0
INFLOWS:
& spec_QA_effort_cum_rate = daily_MP_to_spec_QA / (daily_MP_factor+0.0000001)
(3 Training_Effort(t) = Training_Effort(t - dt) + (training_effort_increase_rate) * dt
INIT Training_Effort =0
INFLOWS:
% training_effort_increase_rate = current_WF * (DT*training_time)

Project Effort 2
[J Cum_Dev_Phase_Effort(t) = Cum_Dev_Phase_Effort(t - dt) + (daily_dev_phase_MP_exp_rate) * dt
INIT Cum_Dev_Phase_Effort=0
INFLOWS:
& daily_dev_phase_MP_exp_rate = (DT*daily_MP_to_dev_phase)/ (daily_MP_factor+0.000001)

(] Cum_Regs_Phase_Effort(t) = Cum_Reqs_Phase_Effort(t - dt) + (reqs_effort_expending_rate) * dt
INIT Cum_Regs_Phase_Effort=0
INFLOWS:
% regs_effort_expending_rate = daily_MP_to_reqs_phase / (daily_MP_factor+0.000001)
(0 Cum_SIT_Effort(t) = Cum_SIT_Effort(t - dt) + (daily_SIT_MP_expending_rate) * dt
INIT Cum_SIT_Effort=0
INFLOWS:
% daily_SIT_MP_expending_rate = (DT*daily_MP_to_SIT_phase) / (daily_MP_factor+0.00001)
(1 Defects_FIT_Correction_Effort(t) = Defects_FIT_Correction_Effort(t - dt) +
(defects_FIT_corraction_effort_cum_rate) * dt
INIT Defects_FIT_Correction_Effort = 0
INFLOWS:
% defects_FIT_correction_effort_cum_rate = (DT*daily_MP_to_defects_FIT_correction) /
(daily_MP_factor+0.00001)
(3 System_Integration_Effort(t) = System_Integration_Effort(t - dt) + (S!_effort_cum_rate) * dt
INIT System_Integration_Effort =0
INFLOWS:
<& Si_effort_cum_rate = (DT daily_MP_to_integration)/(daily_MP_factor+0.00001)
(] System_Test_Effort(t) = System_Test_Effort(t - dt) + (system_test_ MP_expending_rate) * dt
INIT System_Test_Effort=0
INFLOWS:
% system_test_ MP_expending_rate = (DT daily_MP_to_test) / (daily_MP_factor+0.00001)
(O cumulative_project_effort = Int_Detection_Effort + Change_Rework_Overhead +
Cum_Reqs_Phase_Effort + Cum_Dev_Phase_Effort + Cum_SIT_Effort

Project Scope Change

(J Change_Rework_Overhead(t) = Change_Rework_Overhead(t - dt) +
(daily_MP_to_reqs_change_rework) * dt
INIT Change_Rework_Overhead =0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

INFLOWS:
% daily_MP_to_regs_change_rework = (reqs_change_rate * rework_cost_ratio *
nominal_rework_cost) / (daily_MP_factor+0.000001)
[C1 Cum_Discovered_Regs(t) = Cum_Discovered_Reqs(t - dt) + (reqs_discovery) * dt
INIT Cum_Discovered Regs=0
INFLOWS:
S reqs_discovery = unplanned_reqs_discovery
(3 Cum_Regs_Change(t) = Cum_Regs_Change(t - dt) + (reqs_change_rate) * dt
INIT Cum_Reqgs_Change =0
INFLOWS:
% reqs_change_rate = Discovered_Reqs / (unplanned_reqgs_inc_delay/DT)
] Discovered_Reqs(t) = Discovered_Regs(t - dt) + (unplanned_reqs_discovery - regs_change_rate) * dt
INIT Discovered_Regs =0

INFLOWS:
& unplanned_regs_discovery =
Unplanned_Reqs*(DT*frac_unplanned_regs_discovered_per_day_C1)/100
OUTFLOWS:
% reqs_change_rate = Discovered_Reqs / (unplanned_reqs_inc_delay/DT)
1 Pcvd_Project_Size(t) = Pevd_Project_Size(t - dt) + (PPS_inc - PPS_dec) * dt
INIT Pcvd_Project_Size = estimate_of_project_size
INFLOWS:
% PPS_inc = (LOC_per_reqs/1000)*(reqs_change_rate*frac_regs_addition +
raw_reqgs_inc_due_to_reqgs_int)
OUTFLOWS:
& PPS_dec = (LOC_per_reqs/1000) * (reqs_change_rate*(1-frac_reqgs_addition) +
reqs_deletion_due_to_int)
Unplanned_Reqs(t) = Unplanned_Reqs(t - dt) + (- unplanned_reqs_discovery) * dt
INIT Unplanned_Reqs = Unplanned_Reqs_Change
OUTFLOWS:
% unplanned_regs_discovery =
Unplanned_Reqs*(DT*frac_unplanned_reqs_discovered_per_day_C1)/100
frac_regs_addition = 1
nominal_rework_cost = 4
pct_unplanned_reqs_discovered = 100*Cum_Discovered_Reqs/(INiT(Unplanned_Reqs)+0.0001)
project_scope_change_percentage = 100 * (Pcvd_Project_Size - INIT(Pcvd_Project_Size)) /
INIT(Pcvd_Project_Size)
unplanned_reqs_inc_delay = 10
DOCUMENT:
The delay in incorporating unplanned requirements into the project
Set to 10 working days

[

Q000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

% frac_unplanned_reqs_discovered_per_day_C1 = GRAPH(frac_project_pcvd_completed)
(0.00, 1.00), (0.1, 1.00), (0.2, 1.00), (0.3, 1.00), (0.4, 1.00), (0.5, 1.00), (0.6, 1.00), (0.7, 1.00), (0.8,
1.00), (0.9, 1.00), (1, 1.00)
DOCUMENT:
The fraction of unplanned requirements discovery pattern (pattem C1)
More detailed explanations are included in chapter 7

@ frac_unplanned_reqs_discovered_per_day_C2 = GRAPH(frac_project_pcvd_completed)
(0.00, 0.00), (0.1, 0.1), (0.2, 0.5), (0.3, 0.85), (0.4, 1.50), (0.5, 1.50), (0.6, 1.50), (0.7, 1.50), (0.8, 1.50},
(0.9, 1.50), (1, 1.50)

3 frac_unplanned_regs_discovered_per_day_C3 = GRAPH(frac_project_pcvd_completed)
(0.00, 0.00}, (0.1, 0.00), (0.2, 0.00), (0.3, 0.1), (0.4, 0.3), (0.5, 0.7), (0.6, 1.20), (0.7, 2.00), (0.8, 2.00),
(0.9, 2.00), (1, 2.00)

&' rework_cost_ratio = GRAPH(frac_project_pcvd_completed)
(0.00, 1.00), (0.1, 5.00), (0.2, 5.00), (0.3, 5.00), (0.4, 10.0), (0.5, 10.0), (0.6, 10.0), (0.7, 15.0), (0.8,
20.0), (0.9, 20.0), (1, 20.0)
DOCUMENT:
Overhead to incorporate requirements change during the requirements phase: during the design stage
during the coding stage: during the test stage = 1:5:10:20

Project Scope Change Due To Requirements Change

(O deved_units_del_due_to_int = dev_deletion_due_to_int * frac_deved_units

(O deved_units_del_due_to_RC = dev_units_deletion_due_to_RC * frac_deved_units

(O dev_change_due_to_int = dev_int_resolution

DOCUMENT:

Development units change due to interference resolution; the resolution of requirements interferences
and the resolution of development interferences

dev_deletion_due_to_int = dev_change_due_to_int * (1-frac_dev_units_addition)
dev_units_deletion_due_to_RC = regs_deletion_due_to_RC * dev_units_per_reqs
dev_units_del_due_to_int = dev_deletion_due_to_int * frac_raw_dev_units

dev_units_inc_due_to_int = dev_change_due_to_int * frac_dev_units_addition

frac_deved_units = Units_Developed /
(Units_To_Be_Developed+Units_Developed+Units_QAed+0.000001)

frac_dev_int_from_reqgs_int = 0.5

frac_dev_units_addition = 1

frac_QAed_spec = IF(Raw_Reqgs+Reqgs_Spec+QAed_Regs_Spec = 0)

THENO

ELSE QAed_Regs_Spec/ (Raw_Regs+Reqs_Spec+QAed_Regs_Spec)

frac_QAed_units = Units_QAed / (Units_To_Be_Developed+Units_Developed+Units_QAed+0.00001)

000 00000

O

O frac_raw_dev_units = Units_To_Be_Developed /
(Units_To_Be_Developed+Units_Developed+Units_QAed+0.00001)
(O frac_raw_regs = IF(Raw_Regs+Regs_Spec+QAed_Reqs_Spec = 0)
THENO
ELSE Raw_Regs / (Raw_Regs+Reqs_Spec+QAed_Reqs_Spec)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& spec_defect_escape_rate = spec_defects_detection_rate * (1-spec_QA_effectiveness) /
(spec_QA_effectiveness+0.00001)
[Spec_Defects_Bad_Fixes(t) = Spec_Defects_Bad_Fixes(t - dt) + (spec_defects_bad_fixes_rate) * dt
INIT Spec_Defects_Bad_Fixes =0
INFLOWS:
S spec_defects_bad_fixes_rate = spec_defect_fixing_rate * spec_defects_bad_fixes_ratio
] Spec_Defects_Fixed(t) = Spec_Defects_Fixed(t - dt) + (spec_defect_fixing_rate) * dt
INIT Spec_Defects_Fixed =0
INFLOWS:
¥ spec_defect_fixing_rate = (1-spec_defects_bad_fixes_ratio) *
(daily_MP_to_spec_defect_correction * DT) / MP_needed_to_fix_a_spec_defect
post_QA_spec_defect_density =
(Spec_Defects_Bad_Fixes+Escaped_Spec_Defects)/(Cum_QAed_Regs_Spec+0.00001)
pre_QA_spec_defect_density = Spec_Defects / (Reqs_Spec+0.00001)
reqs_defects_per_KLOC =5
DOCUMENT: Requirements defects per KLOC = 5§/KDSI [Boehm 81]
spec_defects_bad_fixes_ratio = 0.12
spec_QA_effectiveness = GRAPH(daily_MP_to_spec_QA)
(0.00, 0.00), (0.1, 0.155), (0.2, 0.32), (0.3, 0.49), (0.4, 0.625), (0.5, 0.725), (0.6, 0.82), (0.7, 0.87), (0.8,
0.885), (0.9, 0.9), (1, 0.9)

0O O

i

Requirements Manpower Allocation

(O average_daily_MP_per_staff = 1

(O daily_MP_factor = average_daily_MP_per_staff * average_productive_time

(O daily_MP_to_reqs_phase = IF (Spec_Defects<0.01 AND Detected_Spec_Defects<0.01 AND
frac_spec_pcvd_completed>0.99)

THEN O

ELSE frac_daily_MP_to_reqs * net_total_daily MP

daily_MP_to_spec =

MAX(0,daily_MP_to_reqs_phase-daily MP_to_spec_QA-daily_MP_to_spec_defect_correction)
daily MP_to_spec_defect_correction =
MP_needed_to_fix_a_spec_defect"desired_spec_defect_correction_rate
daily_MP_to_spec_QA = daily_MP_to_reqs_phase * Actual_Frac_MP_On_QA
desired_spec_defect_correction_rate = Detected_Spec_Defects/spec_defect_correction_delay
MP_needed_to_fix_a_spec_defect = 0.5/8

DOCUMENT:

Manpower needed to fix a specification defect

Set to 0.5 staff hours [50]

1 day = 8 hours

net_total_daily_MP = total_daily_MP - daily_MP_to_regs_change_rework - daily_MP_to_int_detection

00 O O

O

(O Regs_Phase_Complete = IF (frac_spec_pcvd_completed>0.99)
THEN 1
ELSEO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O

221

spec_and_QA_complete = IF (Raw_Reqs<0.1 AND Reqgs_Spec<0.1)

THEN 1

ELSEO

spec_defect_correction_delay =5

total_daily MP = current_WF * daily_MP_factor

frac_daily_MP_to_reqs = GRAPH(frac_spec_pcvd_completed)

(0.00, 1.00), (0.1, 1.00), (0.2, 1.60), (0.3, 1.00), (0.4, 0.996), (0.5, 0.978), (0.6, 0.942), (0.7, 0.852),
(0.8, 0.726), (0.9, 0.456), (1, 0.00)

DOCUMENT:

The fraction of daily manpower that is allocated to the requirements phase

Requirements Manpower Needed
] Cum_Spec{t) = Cum_Spec(t - dt) + (spec_cum_rate) * dt

O
O

O O

@ O 00 O O

INIT Cum_Spec=0
INFLOWS:

% spec_cum_rate = spec_rate
actual_spec_MP_needed = reqs_remaining_to_be_specified / (actual_spec_productivity+0.00001)
actual_spec_productivity = IF(Reqs_Spec_Effort>0)
THEN Cum_Spec/(Reqs_Spec_Effort+0.000001)
ELSE planned_spec_productivity
current_planned_reqs_phase_effort =
init_planned_effort_to_reqs*(pcvd_total_dev_units/INIT(pcvd_total_dev_units))
pevd_reqs_phase_effort_needed =
weight_to_actual_regs_effort_needed*(actual_spec_MP_needed+spec_defect_correction_effort_need
ed+spec_QA_MP_needed) +
(1-weight_to_actual_reqs_effort_needed)*reqs_phase_effort_remaining
planned_spec_productivity = INIT(Raw_Reqgs) /
(init_planned_effort_to_reqs*(1-Actual_Frac_MP_On_QA))
reqs_phase_effort_remaining = MAX(0, current_planned_reqs_phase_effort -
Cum_Regs_Phase_Effort)
regs_remaining_to_be_specified = MAX(Pcvd_Project_Size*1000/LOC_per_reqs-Cum_Spec, 0)

spec_defect_correction_effort_needed = Detected_Spec_Defects * MP_needed_to_fix_a_spec_defec
spec_QA_MP_needed = (actual_spec_MP_needed/(1-Actual_Frac_MP_On_QA)) *
Actual_Frac_MP_On_QA

weight_to_actual_reqs_effort_needed = GRAPH|(frac_spec_pcvd_completed)

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.2), (0.7, 0.4), (0.8, 0.6),
(0.9, 0.8), (1, 1.00)

Requirements Work Flow
] Cum_QAed_Regs_Spec(t) = Cum_QAed_Reqs_Spec(t - dt) + (QAed_regs_spec_cum_rate -

QAed_spec_del_rate) * dt
INIT Cum_QAed_Regs_Spec=0
INFLOWS:
3 QAed_regs_spec_cum_rate = spec_QA_rate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OUTFLOWS:
5 QAed_spec_del_rate = QAed_spec_del_due_to_RC + QAed_spec_del_due_to_int
[0 Cum_Regs_Spec{t) = Cum_Reqs_Spec(t - dt) + (reqs_spec_cum_rate - spec_del_rate) * dt
INIT Cum_Reqs_Spec=0
INFLOWS:
S reqs_spec_cum_rate = spec_rate
OUTFLOWS:
3 spec_del_rate = spec_del_due_to_RC + spec_del_due_to_int
[(OJ Deleted_QAed_Spec(t) = Deleted_QAed_Spec(t - dt) + (QAed_spec_del_rate) * dt
INIT Deleted_QAed_Spec =0
INFLOWS:
& QAed_spec_del_rate = QAed_spec_del_due_to_RC + QAed_spec_del_due_to_int
(] Deleted_Raw_Reqs(t) = Deleted_Raw_Regs(t - dt) + (raw_reqs_del_rate) * dt
INIT Deleted_Raw_Reqs =0
INFLOWS:
% raw_reqs_del_rate = raw_reqs_del due_to_RC + raw_reqs_del_due_to_int
] Deleted_Spec(t) = Deleted_Specit - df) + (spec_del_rate) * dt
INIT Deleted_Spec=0
INFLOWS:
3 spec_del_rate = spec_del_due_to_RC + spec_del_due_to_int
[CJ QAed_Reqgs_Spec(t) = QAed_Reqs_Spec(t - dt) + (spec_QA_rate - QAed_spec_to_dev_rate -
QAed_spec_deletion) * dt
INIT GAed_Regs_Spec=0
INFLOWS:
T spec_QA rate = Regs_Spec/ (average_QA_delay/DT) *
daily_MP_to_spec_QA/(daily_MP_to_spec_QA+0.00001)
DOCUMENT:
Number of requirements reviewed per day
QUTFLOWS:
T QAed_spec_to_dev_rate = QAed_Reqs_Spec/(QAed_spec_to_dev_delay/DT)
2 QAed_spec. deletion = QAed_spec_del_due_to_RC + QAed_spec_del_due_to_int
] QAed_Reqs_Spec_To_Dev_Phase(t) = QAed_Regs_Spec_To_Dev_Phase(t - df) +
(QAed_spec_to_dev_rate) * dt
INIT QAed_Reqs_Spec_To_Dev_Phase=0
INFLOWS:
T QAed_spec_to_dev_rate = QAed_Reqs_Spec/(QAed_spec_to_dev_delay/DT)
(O] Raw_Reqs(t) = Raw_Regqs(t - dt) + (reqs_incoming_rate - spec_rate - raw_regs_deletion) * dt
INIT Raw_Regs = INIT(Pcvd_Project_Size)*1000/ LOC_per_regs
INFLOWS: :
B reqs_incoming_rate = (raw_regs_inc_due_to_reqs_change + raw_reqs_inc_due_to_regs_int)

OUTFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& spec_rate = [F(Raw_Reqs>0)
THEN daily_MP_to_spec * spec_prod_rate * DT
ELSEO
DOCUMENT:
Requirements specification rate (i.e., requirements specified per day)
& raw_reqs_deletion = raw_reqs_del_due_to_RC + raw_reqgs_del_due_to_int
[J Regs_Spec(t) = Reqs_Spec(t - dt) + (spec_rate - spec_QA_rate - spec_delation) * dt
INIT Regs_Spec=0
INFLOWS:
% spec_rate = IF(Raw_Regs>0)
THEN daily_MP_to_spec * spec_prod_rate * DT
ELSE O
DOCUMENT:
Requirements specification rate (i.e., requirements specified per day)

OUTFLOWS:
3 spec_QA_rate = Reqs_Spec/ (average_QA_delay/DT) *
daily_MP_to_spec_QA/(daily_MP_to_spec_QA+0.00001)
DOCUMENT:
Number of requirements reviewed per day
3 spec_delation = spec_del_due_to_RC + spec_del_due_to_int
] Total_Raw_Requirements(f) = Total_Raw_Requirements(t - dt) + (raw_reqs_cum_rate -
raw_reqs_del_rate) * dt
INIT Total_Raw_Requirements = INIT(Raw_Reqgs)
INFLOWS:
& raw_reqs_cum_rate = reqs_incoming_rate
OUTFLOWS:
& raw_reqs_del_rate = raw_reqs_del_due_to_RC + raw_reqs_del_due_to_int
(_; average_QA_delay=10
DOCUMENT:
Average delay for QA
Set to 10 working days (7]
frac_reqs_spec_QAed = Cum_QAed_Reqs_Spec/(Cum_Regs_Spec+0.00001)
frac_spec_pcvd_completed = Cum_QAed_Reqs_Spec/ (Pcvd_Project_Size*1000/LOC_per_regs)
pcvd_reqs_phase_completed = IF(frac_reqs_spec_QAed<0.999 AND frac_reqs_spec_QAed>0.99
AND frac_daily_MP_to_reqs>0) THEN 0 ELSE 0
QAed_spec_to_dev_delay = 1
spec_prod_rate = (spec_prod_ratio*actual_staff_prod_rate) / LOC_per_regs
spec_prod_ratio = 55/7
DOCUMENT:
Requirements specification ratio: the ratio of LOC per person-day and the number of requirements
specified per person-day
Set to 55/7 (calibrated against COCOMO 2.0, i.e., 55 person-months spent in programming and 7
person-months in requirements phase)

100 000

Staff Productive Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

] Cum_Daily_Productive_Time(t) = Cum_Daily_Productive_Time(t - dt) + (DPT_change_rate) * dt
INIT Cum_Daily_Productive_Time = 0
INFLOWS:
& DPT_change_rate = average_productive_time
(] Overtime(t) = Overtime(t - dt) + (overtime_incr_rate - overtime_decr_rate) * dt
INIT Overtime =0
INFLOWS:
% overtime_incr_rate = IF (overtime_sought>Overtime)
THEN (overtime_sought-Overtime) / (work_rate_adjustment_delay/DT)
ELSEO
OUTFLOWS:
& overtime_decr_rate = IF (Overtime>overtime_sought)
THEN (Overtime-overtime_sought)/(work_rate_adjustment_delay/DT)
ELSEO
] Project_Time(t) = Project_Time(t - dt) + (PT_inc_rate - PT_dec_rate) * dt
INIT Project_Time =0.75
INFLOWS:
S PT_inc_rate = ST_dec_rate
OUTFLOWS:
% PT_dec_rate = ST_inc_rate
(] Slack_Time(t) = Slack_Time(t - dt) + (ST_inc_rate - ST_dec_rate) * dt
INIT Slack_Time = 1 - INIT(Project_Time)
INFLOWS:
¥ ST_inc_rate = IF(indicated_slack_time>Slack_Time)
THEN (indicated_slack_time - Slack_Time) / (work_rate_adjustment_delay/DT)
ELSEO
OUTFLOWS:
% ST_dec_rate = IF (Slack_Time>indicated_slack_time)
THEN (Slack_Time-indicated_slack_time) / (work_rate_adjustment_delay/DT)
ELSEO
(O average_productive_time =
(1-overall_communication_overhead)*(Project_Time+effective_overtime-training_time)
effective_overtime = Overtime * overtime_efficiency
indicated_overwork_time = |[F(overwork_duration<1)
THEN 0
ELSE IF (MP_gap_handled>0)
THEN MP_gap_handled/(current_WF*overwork_duration+0.00001)
ELSE IF (MP_excess_absorbed>0)
THEN (0-MP_excess_absorbed)/(current_WF*MAX(20,project_time_remaining)+0.00001)
ELSEOQ

QO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(O indicated_slack_time = IF (overwork_duration<1)
THEN 0.2
ELSE IF(indicated_overwork_time>Slack_Time-0.1)

THEN 0.1

ELSE IF (indicated_overwork_time>=0 AND indicated_overwork_time<Slack_Time-0.1)

THEN MAX(0.1, MIN(0.3, Siack_Time-indicated_overwork_time))

ELSE IF (indicated_overwork_time<0 AND O-indicated_overwork_time<=average_productive_time}
THEN MAX(0.1, MIN(0.3, Slack_Time-indicated_overwork_time}))

ELSE IF(0-indicated_overwork_time>average_productive_time)

THEN MAX(0.1, MIN(0.3, Slack_Time+average_productive_time))

ELSE0.2

O new_staff_training_time = 0.6
overtime_efficiency = 1
DOCUMENT:
Assumption: Project staff spends 100% of their overtime on the project.
O overtime_sought = IF(overwork_duration<1)
THENO
ELSE IF (indicated_overwork_time>indicated_slack_time)
THEN MIN(0.5, indicated_overwork_time-indicated_slack_time)
ELSEO
(O project_average_daily_productive_time = IF(TIME=0)
THENO
ELSE Cum_Daily_Productive_Time/TIME
- trainer's_time_per_new_staff = 0.2
DOCUMENT:
Assumptions:
1. Experienced staff spends 60% of their daily time on the project.
2. Each experienced staff can train three new staff members [AHMO1].
Setat 0.2 (i.e., 0.6/3)

O training_time = SMTH1((new_staff_training_time*New_Staff+trainer's_time_per_new_staff*New_Staff)
I (Exp_Staff+New_Staff), 5)

el

work_rate_adjustment_delay = 10

DOCUMENT:

The average delay that project staff members adjust their work rate.
Set at 10 working days [AHM91]

Staff Productivity
[C] Exhaustion_Level(t) = Exhaustion_Level(t - dt) + (exh_buildup - exh_diminish) * dt
INIT Exhaustion_Level =0
INFLOWS:
% exh_buildup = IF (exh_diminish>0.0001 AND overwork_checkpoint=1)
THEN O
ELSE exhaustion_inc_rate

OUTFLOWS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& exh_diminish = IF (overwork_checkpoint=1 OR overwork=0)
THEN Exhaustion_Level / (exh_diminish_time/DT)
ELSEO
[0 Max_Exh_Check_Point{t) = Max_Exh_Check_Point(t - dt) + (max_ECP_inc_rate -
max_ECP_dec_rate) * dt
INIT Max_Exh_Check_Point=0
INFLOWS:
% max_ECP_inc_rate = exh_buildup
OUTFLOWS:
% max_ECP_dec_rate = IF (exh_diminish<0.01 AND overwork_checkpoint=1)
THEN PULSE(Max_Exh_Check_Point)
ELSE 0
Q actual_staff_prod_rate = nominai_staff_prod_rate *
(SP_effect_on_prod_rate/1)*
(exhaustion_effect_on_prod_rate/1) *
(leaming_effect_on_prod_rate/1)
exh_diminish_time = 20
DOCUMENT:
Set to 20 working days [7]
(O max_MP_shortage_to_be_handled = max_overwork_time * max_overwork_duration * current WF
{_ max_overwork_duration = 50
DOCUMENT:
The maximum duration that project staff members are willing to work overtime
Set at 50 working days [7]
max_overwork_time = 0.6
nominal_staff_prod_rate = frac_staff_exp*LOC_per_dev_unit +
0.5*(1-frac_staff_exp)'LOC_per_dev_unit
DOCUMENT:
Set at one development units per day for the experienced staff members
Set at 0.5 development units per day for new staff members [7]

overwork = MAX(0, Overtime + (INIT(Slack_Time) - Slack_Time))
overwork_checkpoint = SWITCH(Max_Exh_Check_Point, 45)
overwork_duration = IF(exh_diminish>0.02)
THENO
ELSE max_overwork_duration*exhaustion_effect_on_overwork_duration
O overwork_willingness = IF(exh_diminish>0.01)

THENO

ELSE 1
i_* exhaustion_effect_on_overwork_duration = GRAPH(Exhaustion_Level)
(0.00, 1.00), (10.0, 0.8), (20.0, 0.6), (30.0, 0.4), (40.0, 0.2), (50.0, 0.00)
DOCUMENT:
Adapted from the "Multiplier to the Overwork Duration Threshold due to Exhaustion® parameter [7]

0

olele

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

] Defects_Found_in_SIT(t) = Defects_Found_in_SIT(t - dt) + (defects_detection_rate - 227

defects_FIT_correction_rate) * dt
INIT Defects_Found_in_SIT =0
INFLOWS:
& defects_detection_rate = num_of defects_detected_per_unit * testing_rate * test_effectiveness

OUTFLOWS:
S defects_FIT_comection_rate = (DT*daily_MP_to_defects_FIT_correction) /
(effort_to_correct_a_defect_FIT+0.00001)
(] Defects_Released(t) = Defects_Released(t - dt) + (defects_releasing_rate) * dt
INIT Defects_Released =0
INFLOWS:
% defects_releasing_rate = num_of_defects_detected_per_unit*testing_rate *
(1-test_effectiveness)
] Integrated_Units(t) = Integrated_Units(t - dt) + (units_integration_rate - testing_rate) * dt
INIT Integrated_Units = 0
INFLOWS:
2 units_integration_rate = SIT_degree_of_concurrency *
daily_MP_to_integration/(0.5"testing_effort_per_unit+0.00001)
OUTFLOWS:
= testing_rate = SIT_degree_of_concurrency * (DT*daily_MP_to_test) /
(0.5"testing_effort_per_unit+0.00001)
[PreTest_Defects(t) = PreTest_Defects(t - dt) + (pretest_def_inc_rate) * dt
INIT PreTest_Defects =0
INFLOWS:
% pretest_def_inc_rate = pretest_defects_inc_rate
{J Units_To_Be_Integrated(t) = Units_To_Be_Integrated(t - dt) + (deved_units_inc_rate -
units_integration_rate) * dt
INIT Units_To_Be_lIntegrated = 0
INFLOWS:
> deved_units_inc_rate = deved_units_incoming_rate
OUTFLOWS:
%> units_integration_rate = SIT_degree_of_concurrency *
daily_MP_to_integration/(0.5*testing_effort_per_unit+0.00001)
(O defects_removed = IF(Current_PreTest_Defects<1 AND Defects_Found_in_SIT<1)
THEN 1
ELSEO
(O deved_units_incoming_rate = QAed_deved_units_to_test
O effort_to_correct_a_dsfect FIT =0.5
(O frac_units_integrated = Cum_Units_Integrated/pcvd_total_integrated_units
(O frac_units_tested = Cum_Units_Tested/(pcvd_total_integrated_units+0.00001)
(O nom_testing_effort_per_unit=1.5
O num_of_defects_detected_per_unit = 1.2
(O pevd_total_integrated_units = pcvd_total_dev_units

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

O project_pcvd_completed = IF(Units_To_Be_Integrated<0.1 AND frac_units_tested>0.999 AND
Current_PreTest_Defects<0.25 AND Defects_Found_in_SIT<0.25)
THEN PAUSE
ELSEO
SIT_degree_of_concurrency = 1
testing_effort_per_unit = nom_testing_effort_per_unit * mult_to_testing_effort
mult_to_testing_effort = GRAPH(number_of_teams)
(1.00, 1.00), (2.00, 1.05), (3.00, 1.10), (4.00, 1.15), (5.00, 1.20), (6.00, 1.25), {7.00, 1.30), (8.00, 1.35),
(9.00, 1.40), (10.0, 1.45)
O test_effectiveness = GRAPH(daily_MP_to_test)
(0.00, 0.9), (1.00, 0.9}, (2.00, 0.9}, (3.00, 0.9), (4.00, 0.9), (5.00, 0.9), (6.00, 0.9), (7.00, 0.9}, (8.00, 0.9’
(9.00, 0.9), (10.0,0.9)

®OO0

System Integration and Test Manpower Allocation
O daily_ MP_to_defects FIT_correction = IF(frac_units_tested<1)
THEN MIN(MP_needed_to_fix_a_defect_FIT"desired_defect_FIT_correction_rate,
daily_MP_to_SIT_phase)
ELSE daily_MP_to_SIT_phase
O daily_MP_to_integration = IF(frac_units_integrated*100<100)
THEN MAX(0,daily_MP_to_SIT_phase-daily_MP_to_test-daily_MP_to_defects_FIT_correction)
ELSEO
(O daily_MP_to_SIT_phase = IF (project_pcvd_completed=1)
THENO
ELSE total_daily_MP * frac_daily_MP_to_SIT
daily_MP_to_test = IF (frac_units_tested<1)
THEN (daily_MP_to_SIT_phase-daily_MP_to_defects_FIT_correction) *
frac_planned_SIT_MP_on_test
ELSEO
defects_FIT_correction_delay =5
desired_defect_FIT_correction_rate = Defects_Found_in_SIT / (defects_FIT_correction_delay)
frac_daily_MP_to_SIT = 1 - frac_daily_MP_to_reqs - frac_daily_MP_to_dev
frac_planned_SIT_MP_on_test = IF(frac_units_tested<0.999)
THEN 0.75
ELSE0.75
O MP_needed_to_fix_a_defect_FIT = pcvd_def FIT_correction_prod

O

o000

System Integration and Test Manpower Needed
[(J Cum_Units_Integrated(t) = Cum_Units_Integrated(t - dt) + (integrated_units_cum_rate) * dt
INIT Cum_Units_Integrated = 0
INFLOWS:
%> integrated_units_cum_rate = units_integration_rate
(O actual_def_FIT_correction_prod = IF (Defects_FIT_Corrected>0)
THEN Defects_FIT_Corrected / Defects_FIT_Correction_Effort
ELSE planned_def_FIT_correct_prod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

O

actual_intg_MP_needed = (pcvd_total_dev_units-Cum_Units_Integrated)/(actual_intg_prod+0.000001)

(O actual_intg_prod = IF(Cum_Units_Integrated>0)

THEN Cum_Units_Integrated/(System_Integration_Effort+0.00001)

ELSE planned_intg_prod

actual_system_test MP_need = (pcvd_total dev_units-Cum_Units_Tested) /
(actual_system_test_prod+0.00001)

actual_system_test_prod = IF (Cum_Units_Tested>0)

THEN Cum_Units_Tested/System_Test_Effort

ELSE planned_system_test_prod

current_planned_SIT_effort = init_planned_effort_to_SIT *
(pcvd_total_dev_units/INIT(pcvd_total_dev_units))

def_FIT_correction_effort_needed = Defects_Found_in_SIT*effort_to_correct_a_defect FIT
pevd_def FIT_correction_prod =

SMTH1(actual_def FIT_correction_prod,20,actual_def_FIT_correction_prod)
pevd_SIT_effort_needed =
weight_to_actual_SIT_MP_needed*(actual_intg_MP_needed+actual_system_test MP_need+def FIT
_correction_effort_needed) +

(1-weight_to_actual_SIT_MP_needed)*SIT_effort_remaining

planned_def FIT_cormect_prod=5

planned_intg_prod = pcvd_total_dev_units /
(current_planned_SIT_effort*(1-frac_planned_SIT_MP_on_test))
planned_system_test_prod = pcvd_total_dev_units /
(current_planned_SIT_effort*frac_planned_SIT_MP_on_test)

SIT_effort_remaining = MAX(0, current_planned_SIT_effort-Cum_SIT_Effort)
weight_to_actual_SIT_MP_needed = GRAPH(frac_units_tested)

{0.00, 0.00), (0.1, 0.00), (0.2, 0.096), (0.3, 0.234), (0.4, 0.462), (0.5, 0.708), (0.6, 0.852), (0.7, 0.948),
(0.8, 0.994), (0.9, 0.997), (1, 1.00)

O O

O 00 O

OO0 O 0O

Workforce
(] Desired_In_Trans_Staff(t) = Desired_In_Trans_Staff(t - dt) + (DITS_rate - new_staff_in_trans_rate) *
dt
INIT Desired_In_Trans_Staff =0
INFLOWS:
% DITS_rate = staff_out_trans_rate
OUTFLOWS:

& new_staff_in_trans_rate = Desired_In_Trans_Staff/ (in_trans_delay/DT)
(] Exp_Staff(t) = Exp_Staff(t - dt) + (assimilation_rate - quit_rate - exp_staff_out_trans_rate) * dt
INIT Exp_Staff = initial_exp_WF
INFLOWS:
% assimilation_rate = New_Staff/ (assimilation_delay/DT)
OUTFLOWS:
B quit_rate = Exp_Staff / (employment_time/DT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O employment_time =673
DOCUMENT:
Staff average employment time
Set at 673 working days [7]
(O frac_staff_exp = Exp_Staff/ current WF
DOCUMENT:
Number of experienced staff divided by current total work force
FTE_exp_staff = Exp_Staff * average_daily_MP_per_staff
hiring_delay = 40
DOCUMENT:
Time to hire new project
Set at 40 working days [7]
(O in_trans_delay = 10
DOCUMENT: Time to transfer staff into the project
Set at two weeks (i.e., ten working days) [7]
max_new_staff = mx_new_hirees_per_exp_staff * FTE_exp_staff
mx_new_hirees_per_exp_staff= 3
out_trans_delay = 10
DOCUMENT:
Time to transfer staff out of the project
Set at 10 work days (same as the in-transfer delay)
(O project_average_staff_level = IF(TIME>0)
THEN Project_Staff Level/ TIME
ELSEO
staff_in_trans_rate = hiring_rate + new_staff_in_trans_rate
staff_out_trans_rate = new_staff_out_trans_rate + exp_staff_out_trans_rate
WF_production_delay = hiring_delay + assimilation_delay

elele; QO

Nelele)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230

APPENDIX C
KEY PROJECT STATISTICS OF THE EXAMPLE PROJECT

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N

g s W

O ® N o

10.

11.

13.

232

. EXAMPLE is an organic-mode project.
. Project real size is 64 KDSI (or 64000/60 = 1067 tasks).

. Project was underestimated by a factor of 1.5.

Initial estimate of the project size is 42.88 KDSI (or 2880/60 = 714.6 tasks).

. The distribution of effort expenditure is 22% for system testing, 15 to 20% for

QA.

. Staff’s “actual productivity” is 33.84 DSI/man-day.
. The “actual fraction of a man-day on project” is 60%.

. Communication overhead is defined as a function of team size.

COCOMO'’s estimate for the average staffing level is 8 people. Therefore, com-
munication overhead is around 5%.

Nominal staff productivity is 60 DSI/ man-day. For the EXAMPLE project, a task
is 60 DSI, and the nominal potential staff productivity is 1 task/man-day.
Average daily manpower per staff is 1 (i.e., staff work full-time on the EXAM-
PLE project).

The EXAMPLE project starts with a work force equal to half the “average staff-
ing level,” which is estimated to be eight project staff. Therefore, there are four
project staff on board in the initial stage of the project.

Project took 430 work days to complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[1]

[2]

[3]

[4]

5]

]

[8]

REFERENCES

K. R. Abbott, “Product development: a chunk at a time,” Proceedings of the 8th
IEEE International Workshop on Software Technology and Engineering Practice
Incorporating Computer Aided Software Engineering, IEEE Computer Society,
Los Alamitos, CA, 1997.

T. K. Abdel-Hamid and S. E. Madnick, “A model of software project manage-
ment dynamics,” Proceedings of the 6th Annual International Computer Soft-
ware and Applications Conference, IEEE Computer Society, 1982, pp. 539-54.

T. K. Abdel-Hamid and S. E. Madnick, “Impact of schedule estimation on soft-
ware project behavior,” IEEE Software, Vol. 3, No. 4, July 1986, pp. 70-75.

T. K. Abdel-Hamid, “The dynamics of software project staffing: a system
dynamics based simulation approach,” [EEE Transactions on Software Engineer-
ing, Vol. 15, No. 2, February 1989, pp. 109-119.

T. K. Abdel-Hamid, “A study of staff turnover, acquisition, and assimilation
and their impact on software development cost and schedule,” Journal of Man-
agement Information Systems, Vol. 6, No. 1, 1989, pp. 21-40.

T. K. Abdel-Hamid, “Investigating the cost/schedule trade-off in software
development,” [EEE Software, Vol. 7, No. 1, January 1990, pp. 97-105.

T. K. Abdel-Hamid and S. E. Madnick, Software project dynamics: an integrated
approach, Prentice-Hall, Englewood Cliffs, NJ, 1991.

T. K. Abdel-Hamid, “Investigating the impacts of managerial Turnover/succes-
sion on software project performance,” Journal of Management Information Sys-

tems, Vol. 9, No. 2, Fall 1992, pp. 127-144.
233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

[91 T.K Abdel-Hamid, “Thinking in circles,” American Programmer, Vol. 6, No. 5,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

May 1993, pp. 3-9.

T. K. Abdel-Hamid, “ A multiproject perspective of single-project dynamics,”
Journal of Systems and Software, Vol. 22, No. 3, September 1993, pp. 151-165.

T. K. Abdel-Hamid, “The slippery path to preductivity improvement,” I[EEE
Software, Vol. 13, No. 4, July 1996, pp. 43-52. |

M. Aoyama, “Concurrent development of software systems: a new develop-
ment paradigm,” Software Engineering Notes, Vol. 12, No. 3, July 1987,
pp- 20-24.

M. Aoyama, “Distributed concurrent development of software systems: an
object-oriented process model,” Proceedings of 14th Annual International
Computer Software and Applications Conference, IEEE Computer Society
Press, Los Alamitos, CA, 1990, pp. 330-337.

M. Aoyama, “Concurrent development process model,” I[EEE Software, July
1993, pp. 46-55.

M. Aoyama, “Management of distributed concurrent development for large-
scale software systems,” Proceedings of the 1995 Asia Pacific Software Engi-
neering Conference, IEEE Computer Society Press, Los Alamitos, CA, 1995,
pp. 158-167.

M. Aoyama, “Beyond software factories: concurrent-development process
and an evolution of software process technology in Japan,” Information and
Software Technology, Vol. 38, 1996, pp. 133-143.

M. Aoyama, “Sharing the design information in a distributed concurrent
development of large-scale software systems,” Proceedings of 20th Annual
International Computer Software and Applications Conference, pp. 168-175.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

235
M. Aoyama, “ Agile software process model,” Proceedings 21st Annual Inter-

national Computer Software and Applications Conference, IEEE Computer
Society, Los Alamitos, CA, pp. 454-9.

M. Aoyama, “Managing the concurrent development of large-scale software
systems,” International Journal of Technology Management, Vol. 14, Nos 6/7/8,
pp- 739-765.

M. Aoyama, interview with Aoyama and three other Fujitsu senior engi-
neers, July 14-16, 1998.

J. D. Blackburn, G. Hoedemaker, and L. N. van Wassenhove, “Concurrent
software engineering: prospects and pitfalls,” IEEE Transactions on Engineer-
ing Management, Vol. 43, No. 2, May 1996, pp. 179-188.

B. Boehm, Software engineering economics, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1981.

B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, R. Selby, “Cost
models for future software life cycle processes: COCOMO 2.0,” Annals of
Software Engineering, Vol. 1, 1995, pp. 45-60.

F. P. Brooks, Jr., The mythical man-month, Addison-Wesley, 1995.

P. G. Brown, “QFD: echoing the voice of the customer,” AT&T Technical Jour-
nal, Vol. 70, No. 2, March-April 1991, pp. 18-32.

M. E. Bush and N.E. Fenton, “Software measurement: a conceptual frame
work,” Journal of Systems and Software, Vol. 12, 1990, pp. 223-231.
CALS/Concurrent Engineering Task Group, “First principles of concurrent
engineering: a competitive strategy for electronic system development,”

Review Draft, Washington D.C., CALS Industry Steering Group, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

236
K. B. Clark and T. Fujimoto, “Overlapping problem solving in product devel-

opment,” in Ferdows, K., ed., Managing International Manufacturing, North-
Holiand, 1989, pp. 127-152.

Center for Software Engineering, “COCOMO II model definition manual:
version 1.4,” Computer Science Department, University of Southern Califor-
nia, http://sunset.edu/Cocomo.html, 1997.

K. G. Cooper, “The rework cycle: benchmarks for the project manager,”
Project Management Jourral, Fall 1993, pp. 8-12.

K. G. Cooper and T. W. Mullen, “Swords and plowshares: the rework cycles
of defense and commercial software development projects,” American Pro-
grammer, Vol. 6. No. 5, May 1993, pp. 41-51.

M. L. Elboushi and J.S. Sherif, “Object-oriented software design utilizing
Quality Function Deployment,” Journal of Systems and Software, Vol. 38, No. 2,
August 1997, pp. 133-143.

B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design pro-
cess for large systems,” Communications of the ACM, Vol. 31, No. 11, 1988,
pp. 1268-1287.

M. A. Cusumano and R. W. Selby, Microsoft secrets: how the world's most power-
ful software company creates technology, shapes markets, and manages people, Free
Press, 1995.

M. A. Cusumano and R. W. Selby, “How Microsoft builds software,” Commu-
nications of the ACM, Vol. 40, No. 6, June 1997, pp. 53-61.

J. W. Forrester, Industrial dynamics, The MIT Press, Cambridge, MA, 1961.

L. Garber and D. Sims, “In pursuit of hardware-software codesign,” IEEE
Computer, June 1998, pp. 12-14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sunset.edu/Cocomo.html

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

237
R. L. Gordon and J. C. Lamb, “A close look at Brooks’ Law,” Datamation, June

1977, pp. 81-86.
S. Haag and P. Hogan, “Research issues in software quality function deploy-
ment: a new beginning for software engineering methodologies,” Proceed-
ings Decision Sciences Institute ‘92, DSI, Atlanta, GA, 1992, pp. 926-928.
S. Haag, M.K. Raja, and L.L. Schkade, “Quality function deployment usage
in software development,” Communications of the ACM, January 1996, Vol. 39,
No. 1, pp. 41-49.
J. R. Hartley, Concurrent engineering: shortening lead times, raising quality and
lowering costs, Cambridge, MA: Productivity Press, 1992.
K. Horner, “Methodology as a productivity tool,” in Software Engineering Pro-
ductivity Handbook, J. Keyes, ed., 1993, pp. 45-60.
ithink analyst Technical Documentation, High Performance Systems, Inc.,
1996.
E. Jandourek, “ A model for platform development,” Hewlett-Packard Journal,
August 1996.
C. Jones, Programming productivity, McGraw-Hill Book Co., New York, 1986.
K. Karoui, R. Dssouli, and O. Cherkaoui, “Specification transformations and
design for testability,” Proceedings of the 1996 IEEE Global Telecommunica-
tions Conference, Vol. 1, 1996, IEEE Computer Society, Piscataway, NJ,
pp- 680-685.

J. C. Kelly, J. S. Sherif, and J. Hops, “ An analysis of defect densities found dur-
ing software inspections,” Journal of Systems and Software, 17, 1992,
pp- 111-117.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

238
C.Y. Lin and R. R. Levary, “Computer-aided software development process

design,” IEEE Transactions of Software Engineering, Vol. 15, No. 9, September
1989, pp. 1025-1037.

C. Y. Lin, “Walking on battlefields: tools for strategic software management,”
American Programmer, Vol. 6. No. 5, May 1993, pp. 33-40.

C. Y. Lin, T. Abdel-Hamid, and J. S. Sherif, “Software-engineering process
simulation model (SEPS),” Journal of Systems and Software, Vol. 38, 1997,
pp- 263-277.

J. C. Lin, P. L. and S.C. Yang, “Promoting the software design for testability
towards a partial test oracle,” Proceedings of the 1997 8th IEEE International
Workshop on Software Technology and Engineering Practice, STEP, 1997,
IEEE Computer Society, Los Alamitos, CA, pp. 209-214.

R. Madachy, A software project dynamics model for project cost, schedule
and risk assessment, Ph.D. dissertation, Department of Industrial and Sys-
tems Engineering, USC, December 19%4.

R.T. Madacﬁy, “System dynamics modeling of an inspection-based process,”
Proceedings of the 18th International Conference on Software Engineering,
IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 376-386.

J. Martin, Rapid application development, MacMillan, 1991.

J. McCarthy, Dynamics of software development, Microsoft Press, 1995.

S. C. McConnell, Code complete: a practical handbook of software construction,
Microsoft Press, Redmond, WA, 1993.

S. C. McConnell, Rapid development: taming wild software schedules, Microsoft
Press, Redmond, WA, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[671

[68]

239
G. J. Myers, “A controlled experiment in program testing and code walk

through/inspections,” Communications of the ACM, Vol. 21, No. 9, September
1978, pp. 760-768.

R. J. Muller, Productive objects-an applied software project management frame-
work, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1998.

B. Prasad, Concurrent engineering fundamentals, Prentice Hall, PTR, 1996.

R. S. Pressman, Software engineering; a practitioner’s approach, 4th edition,
McGraw-Hill, 1997.

P. Pulli and R. Elmstrom, “IPTES: a concurrent engineering approach for
real-time software development,” Real-Time Systems, Vol. 5, 1993,
pp. 139-152.

P. J. Pulli and M. P. Heikkinen, “Concurrent engineering for real-time sys-
tems,” IEEE Software, Vol. 10, Nov. 1993, pp. 39-44.

L. H. Putnam and W. Myers, [ndustrial strength software: effective management
using measurement, IEEE Computer Society Press, Los Alamitos, CA, 1997.

F. Rafii and S. Perkins, “Internationalizing software with concurrent engi-
neering,” [EEE Software, Vol. 12, No. 5, September 1995, pp. 39-46.

M. Ramachandran and W. Fleischer, “Design for large scale software reuse:
an industrial case study,” Proceedings of the 4th International Conference on
Software Reuse, IEEE Computer Society, Los Alamitos, CA, 1996,
pp. 104-111.

A. Rosenblatt and G. F. Watson, “Concurrent engineering,” IEEE Spectrum,
July 1991, pp. 22-37.

A. Rodrigues and T. Williams, “System dynamics in software project man-

agement: towards the development of a formal integrated framework,” Pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

240
ceeding of the 1996 International System Dynamics Conference, july 21-25,

Cambridge, MA.

S. G. Shina, Concurrent engineering and design for manufacture of electronic
products, New York: Van Nostrand Reinhold, 1991.

R. Thackeray and G. van Treeck, “Applying quality function deployment for
software product development,” Journal of Engineering Design, Vol. 1, No. 4,
1990, pp. 389-410.

T. L. Tran, “QFD application to a software-intensive system development
project,” Proceedings of the 1996 IEEE International Engineering Manage-
ment Conference, IEEE Piscataway, NJ, pp. 683-689.

T. L. Tran and J.S. Sherif, “Quality function deployment (QFD): an effective
technique for requirements acquisition and reuse,” Proceedings of the 2nd
IEEE International Software Engineering Standards Symposium, IEEE Com-
puter Society, Los Alamitos, CA, pp. 191-200.

H. T. Yeh, “Re-engineering a software development process for fast delivery-
approach & experiences,” Proceedings of the First International Conference
on the Software Process, IEEE Cornputer Society Press, Los Alamitos, CA,
1991, pp. 106-112.

R. T. Yeh, “Notes on concurrent engineering,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 4, No. 5, October 1992, pp. 407-414.

D. B. Simmons, N.C. Ellis, H. Fujihara, and W. Kuo, Software measurement: A
visualization toolkit for project control and process improvement, Prentice-Hall,
Inc., Upper Saddle River, NJ, 1998.

R. P. Smith, “The historical roots of concurrent engineering fundamentals,”
IEEE Transactions on Engineering Management, Vol. 44, No. 1, February 1997,
pp- 67-78.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

241
P.]. Starr, “Modeling issues and decisions in system dynamics,” TIMS Studies

in the Management Science, Vol. 14, 1980, pp. 45-59.

J. L. Turino, Managing concurrent engineering: buying time to a market: a defini-
tive guide to improved competitiveness in electronics design and manufacturing,
New York: Van Nostrand Reinhold, 1992.

J. D. Tvedt and J. S. Collofello, “Evaluating the effectiveness of process
improvements on software development cycle time via system dynamics
modeling,” Proceedings of the 19th Annual International Computer Soft-
ware and Applications Conference, 1995, pp. 318-325.

J. D. Tvedt, An extensible model for evaluating the impact of process improvements
on software development cycle time, Ph.D. dissertation, Arizona State Univer-
sity, May 1996.

D. M. Weiss, “Evaluating software development by error analysis,” Journal of
Systems and Software, Vol. 1, 1979, pp. 57-70.

N. Whitten, Managing software development process: formula for success, second
edition, Joh:i Wiley & Sons, Inc., 1995.

H. P. E. Vranken, M. F. Witteman, and R. C. van Wuijtswinkel, “Design for
testability in hardware-software systems,” IEEE Design & Test of Comput-
ers, Vol. 13, No. 3, Fall 1996, pp. 79-87.

G. M. Weinberg, Quality software management: Volume 1, system thinking, Dor-
set House Publishing, 1992.

R. I. Winner, J. P. Pennell, H. E. Bertrend, and M. M. G. Slusarczuk, The role
of concurrent engineering in weapons system acquisition. IDA Report R-338,

Alexandria, VA: Institute for Defense Analyses, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242
[86] B.]J.Zirger and J. L. Hartley, “The effect of acceleration techniques on prod-

uct development time,” IEEE Transactions on Engineering Management, Vol.
43, No. 2, May 1996, pp. 143-152.

[87] R.E.Zultner, “Software quality [function] deployment,” ASQC Quality Con-
gress Transactions, 1989, pp. 558-563.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIOGRAPHICAL INFORMATION

Chih-tung Hsu received the degree of Bachelor of Science in Civil Engineering from
National Chiao Tung University, Taiwan, in 1986, the degree of Masters of Science in
Mechanical Engineering from Tamkang University, Taiwan, in 1988, the degree of Masters
of Science in Computer Science and Engineering from The University of Texas at Arlington
on December 1992, and the degree of Doctor of Philosophy in Computer Science and Engi-
neering from The University of Texas at Arlington in 1999.

He received an outstanding research by a Ph.D. student award in 1998. He has pub-
lished eight technical papers in the areas of software incremental delivery, object-oriented
development and testing methodologies, and system dynamics modeling during his Ph.D
study.

He taught classes while he was working for his Ph.D. degree, including software engi-
neering, object-oriented software engineering, algorithms and data structures. His research
interests include system dynamics software process modeling, techniques for software
requirements specification, and methodologies for object-oriented software development

and testing.

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

